The Riemann Hypothesis

Download The Riemann Hypothesis ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to The Riemann Hypothesis book pdf for free now.

The Riemann Hypothesis

Author : Roland van der Veen
ISBN : 9780883856505
Genre : Mathematics
File Size : 45.72 MB
Format : PDF, Mobi
Download : 175
Read : 576

This book introduces interested readers to one of the most famous and difficult open problems in mathematics: the Riemann Hypothesis. Finding a proof will not only make you famous, but also earns you a one million dollar prize. The book originated from an online internet course at the University of Amsterdam for mathematically talented secondary school students. Its aim was to bring them into contact with challenging university level mathematics and show them why the Riemann Hypothesis is such an important problem in mathematics. After taking this course, many participants decided to study in mathematics at university.
Category: Mathematics

The Riemann Hypothesis

Author : Peter Borwein
ISBN : 9780387721255
Genre : Mathematics
File Size : 42.26 MB
Format : PDF, Mobi
Download : 779
Read : 775

The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture.
Category: Mathematics

Equivalents Of The Riemann Hypothesis

Author : Kevin Broughan
ISBN : 9781107197121
Genre : Mathematics
File Size : 86.26 MB
Format : PDF, ePub, Mobi
Download : 434
Read : 694

The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.
Category: Mathematics

The Riemann Hypothesis And The Roots Of The Riemann Zeta Function

Author : Samuel W. Gilbert
ISBN : 143921638X
Genre : Mathematics
File Size : 77.14 MB
Format : PDF, ePub, Docs
Download : 224
Read : 161

The author demonstrates that the Dirichlet series representation of the Riemann zeta function converges geometrically at the roots in the critical strip. The Dirichlet series parts of the Riemann zeta function diverge everywhere in the critical strip. It has therefore been assumed for at least 150 years that the Dirichlet series representation of the zeta function is useless for characterization of the non-trivial roots. The author shows that this assumption is completely wrong. Reduced, or simplified, asymptotic expansions for the terms of the zeta function series parts are equated algebraically with reduced asymptotic expansions for the terms of the zeta function series parts with reflected argument, constraining the real parts of the roots of both functions to the critical line. Hence, the Riemann hypothesis is correct. Formulae are derived and solved numerically, yielding highly accurate values of the imaginary parts of the roots of the zeta function.
Category: Mathematics

The Riemann Hypothesis For Function Fields

Author : Machiel van Frankenhuijsen
ISBN : 9781107047211
Genre : Mathematics
File Size : 80.62 MB
Format : PDF, ePub, Mobi
Download : 682
Read : 664

This book provides a lucid exposition of the connections between non-commutative geometry and the famous Riemann Hypothesis, focusing on the theory of one-dimensional varieties over a finite field. The reader will encounter many important aspects of the theory, such as Bombieri's proof of the Riemann Hypothesis for function fields, along with an explanation of the connections with Nevanlinna theory and non-commutative geometry. The connection with non-commutative geometry is given special attention, with a complete determination of the Weil terms in the explicit formula for the point counting function as a trace of a shift operator on the additive space, and a discussion of how to obtain the explicit formula from the action of the idele class group on the space of adele classes. The exposition is accessible at the graduate level and above, and provides a wealth of motivation for further research in this area.
Category: Mathematics

The Riemann Hypothesis

Author : Karl Sabbagh
ISBN : 0374529353
Genre : Mathematics
File Size : 23.77 MB
Format : PDF, Kindle
Download : 702
Read : 934

Since 1859, when the shy German mathematician Bernhard Riemann wrote an eight-page article giving a possible answer to a problem that had tormented mathematical minds for centuries, the world's greatest mathematicians have been fascinated, infuriated, and obsessed with proving the Riemann hypothesis. They speak of it in awed terms and consider it to be an even more difficult problem than Fermat's last theorem, which was finally proven by Andrew Wiles in 1995. In The Riemann Hypothesis, acclaimed author Karl Sabbagh interviews some of the world's finest mathematicians who have spent their lives working on the problem--and whose approaches to meeting the challenges thrown up by the hypothesis are as diverse as their personalities. Wryly humorous, lively, accessible and comprehensive, The Riemann Hypothesis is a compelling exploration of the people who do math and the ideas that motivate them to the brink of obsession--and a profound meditation on the ultimate meaning of mathematics.
Category: Mathematics

The Theory Of The Riemann Zeta Function

Author : Late Savilian Professor of Geometry E C Titchmarsh
ISBN : 0198533691
Genre : Architecture
File Size : 21.2 MB
Format : PDF, Mobi
Download : 554
Read : 842

The Riemann zeta-function is our most important tool in the study of prime numbers, and yet the famous "Riemann hypothesis" at its core remains unsolved. This book studies the theory from every angle and includes new material on recent work.
Category: Architecture

The Riemann Zeta Function

Author : Anatoly A. Karatsuba
ISBN : 9783110886146
Genre : Mathematics
File Size : 85.39 MB
Format : PDF
Download : 910
Read : 793

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany
Category: Mathematics

Casimir Force Casimir Operators And The Riemann Hypothesis

Author : Gerrit Dijk
ISBN : 9783110226133
Genre : Mathematics
File Size : 50.39 MB
Format : PDF, Docs
Download : 302
Read : 167

This volume contains the proceedings of the conference "Casimir Force, Casimir Operators and the Riemann Hypothesis – Mathematics for Innovation in Industry and Science" held in November 2009 in Fukuoka (Japan). The conference focused on the following topics: Casimir operators in harmonic analysis and representation theory Number theory, in particular zeta functions and cryptography Casimir force in physics and its relation with nano-science Mathematical biology Importance of mathematics for innovation in industry
Category: Mathematics

Prime Numbers And The Riemann Hypothesis

Author : Barry Mazur
ISBN : 9781107101920
Genre : Mathematics
File Size : 82.75 MB
Format : PDF, ePub
Download : 959
Read : 664

This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.
Category: Mathematics

Exploring The Riemann Zeta Function

Author : Hugh Montgomery
ISBN : 9783319599694
Genre : Mathematics
File Size : 80.29 MB
Format : PDF, Kindle
Download : 575
Read : 495

Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects. The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.
Category: Mathematics

The Riemann Hypothesis 1 Euler S Discovery Of The Product Formula3 2 Extending The Domain Of The Zeta Function 3 3 A Crash Course On Complex Numbers 3 4 Complex Functions And Powers 3 5 The Complex Zeta Function 3 6 The Zeroes Of The Zeta Function 3 7 The Hunt For Zeta Zeroes 3 8 Additional Exercises 4 Primes And The Riemann Hypothesis 4 1 Riemann S Functional Equation 4 2 The Zeroes Of The Zeta Function 4 3 The Explicit Formula For X 4 4 Pairing Up The Non Trivial Zeroes 4 5 The Prime Number Theorem 4 6 A Proof Of The Prime Number Theorem 4 7 The Music Of The Primes 4 8 Looking Back

Author : Roland van Der
ISBN : 0883859890
Genre :
File Size : 42.62 MB
Format : PDF, Docs
Download : 828
Read : 367

The Riemann hypothesis concerns the prime numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 ... Ubiquitous and fundamental in mathematics as they are, it is important and interesting to know as much as possible about these numbers. Simple questions would be: how are the prime numbers distributed among the positive integers? What is the number of prime numbers of 100 digits? Of 1,000 digits? These questions were the starting point of a groundbreaking paper by Bernhard Riemann written in 1859. As an aside in his article, Riemann formulated his now famous hypothesis that so far no on.
Category:

Equivalents Of The Riemann Hypothesis Volume 1 Arithmetic Equivalents

Author : Kevin Broughan
ISBN : 9781108195416
Genre : Mathematics
File Size : 42.54 MB
Format : PDF, ePub, Mobi
Download : 712
Read : 238

The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.
Category: Mathematics

Stalking The Riemann Hypothesis

Author : Daniel Nahum Rockmore
ISBN : 9781446483626
Genre : Science
File Size : 33.67 MB
Format : PDF, Kindle
Download : 878
Read : 991

Like a hunter who sees 'a bit of blood' on the trail, that's how Princeton mathematician Peter Sarnak describes the feeling of chasing an idea that seems to have a chance of success. If this is so, then the jungle of abstractions that is mathematics is full of frenzied hunters these days. They are out stalking big game: the resolution of 'The Riemann Hypothesis', seems to be in their sights. The Riemann Hypothesis is about the prime numbers, the fundamental numerical elements. Stated in 1859 by Professor Bernhard Riemann, it proposes a simple law which Riemann believed a 'very likely' explanation for the way in which the primes are distributed among the whole numbers, indivisible stars scattered without end throughout a boundless numerical universe. Just eight years later, at the tender age of thirty-nine Riemann would be dead from tuberculosis, cheated of the opportunity to settle his conjecture. For over a century, the Riemann Hypothesis has stumped the greatest of mathematical minds, but these days frustration has begun to give way to excitement. This unassuming comment is revealing astounding connections among nuclear physics, chaos and number theory, creating a frenzy of intellectual excitement amplified by the recent promise of a one million dollar bounty. The story of the quest to settle the Riemann Hypothesis is one of scientific exploration. It is peopled with solitary hermits and gregarious cheerleaders, cool calculators and wild-eyed visionaries, Nobel Prize-winners and Fields Medalists. To delve into the Riemann Hypothesis is to gain a window into the world of modern mathematics and the nature of mathematics research. Stalking the Riemann Hypothesis will open wide this window so that all may gaze through it in amazement.
Category: Science

Quantized Number Theory Fractal Strings And The Riemann Hypothesis From Spectral Operators To Phase Transitions And Universality

Author : Hafedh Herichi
ISBN : 9813230797
Genre : Mathematics
File Size : 27.97 MB
Format : PDF, ePub, Mobi
Download : 737
Read : 858

Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen ''heuristically'' introduced the spectral operator in their development of the theory of fractal strings and their complex dimensions, specifically in their reinterpretation of the earlier work of M L Lapidus and H Maier on inverse spectral problems for fractal strings and the Riemann hypothesis.One of the main themes of the book is to provide a rigorous framework within which the corresponding question ''Can one hear the shape of a fractal string?'' or, equivalently, ''Can one obtain information about the geometry of a fractal string, given its spectrum?'' can be further reformulated in terms of the invertibility or the quasi-invertibility of the spectral operator.The infinitesimal shift of the real line is first precisely defined as a differentiation operator on a family of suitably weighted Hilbert spaces of functions on the real line and indexed by a dimensional parameter c. Then, the spectral operator is defined via the functional calculus as a function of the infinitesimal shift. In this manner, it is viewed as a natural ''quantum'' analog of the Riemann zeta function. More precisely, within this framework, the spectral operator is defined as the composite map of the Riemann zeta function with the infinitesimal shift, viewed as an unbounded normal operator acting on the above Hilbert space.It is shown that the quasi-invertibility of the spectral operator is intimately connected to the existence of critical zeros of the Riemann zeta function, leading to a new spectral and operator-theoretic reformulation of the Riemann hypothesis. Accordingly, the spectral operator is quasi-invertible for all values of the dimensional parameter c in the critical interval (0,1) (other than in the midfractal case when c =1/2) if and only if the Riemann hypothesis (RH) is true. A related, but seemingly quite different, reformulation of RH, due to the second author and referred to as an ''asymmetric criterion for RH'', is also discussed in some detail: namely, the spectral operator is invertible for all values of c in the left-critical interval (0,1/2) if and only if RH is true.These spectral reformulations of RH also led to the discovery of several ''mathematical phase transitions'' in this context, for the shape of the spectrum, the invertibility, the boundedness or the unboundedness of the spectral operator, and occurring either in the midfractal case or in the most fractal case when the underlying fractal dimension is equal to 1/2 or 1, respectively. In particular, the midfractal dimension c=1/2 is playing the role of a critical parameter in quantum statistical physics and the theory of phase transitions and critical phenomena.Furthermore, the authors provide a ''quantum analog'' of Voronin''s classical theorem about the universality of the Riemann zeta function. Moreover, they obtain and study quantized counterparts of the Dirichlet series and of the Euler product for the Riemann zeta function, which are shown to converge (in a suitable sense) even inside the critical strip.For pedagogical reasons, most of the book is devoted to the study of the quantized Riemann zeta function. However, the results obtained in this monograph are expected to lead to a quantization of most classic arithmetic zeta functions, hence, further ''naturally quantizing'' various aspects of analytic number theory and arithmetic geometry.The book should be accessible to experts and non-experts alike, including mathematics and physics graduate students and postdoctoral researchers, interested in fractal geometry, number theory, operator theory and functional analysis, differential equations, complex analysis, spectral theory, as well as mathematical and theoretical physics. Whenever necessary, suitable background about the different subjects involved is provided and the new work is placed in its proper historical context. Several appendices supplementing the main text are also included.
Category: Mathematics

In Search Of The Riemann Zeros

Author : Michel Laurent Lapidus
ISBN : 0821842226
Genre : Mathematics
File Size : 61.46 MB
Format : PDF
Download : 130
Read : 971

Formulated in 1859, the Riemann Hypothesis is the most celebrated and multifaceted open problem in mathematics. In essence, it states that the primes are distributed as harmoniously as possible--or, equivalently, that the Riemann zeros are located on a single vertical line, called the critical line. In this book, the author proposes a new approach to understand and possibly solve the Riemann Hypothesis. His reformulation builds upon earlier (joint) work on complex fractal dimensions and the vibrations of fractal strings, combined with string theory and noncommutative geometry. Accordingly, it relies on the new notion of a fractal membrane or quantized fractal string, along with the modular flow on the associated moduli space of fractal membranes. Conjecturally, under the action of the modular flow, the spacetime geometries become increasingly symmetric and crystal-like, hence, arithmetic. Correspondingly, the zeros of the associated zeta functions eventually condense onto the critical line, towards which they are attracted, thereby explaining why the Riemann Hypothesis must be true. Written with a diverse audience in mind, this unique book is suitable for graduate students, experts and nonexperts alike, with an interest in number theory, analysis, dynamical systems, arithmetic, fractal or noncommutative geometry, and mathematical or theoretical physics.
Category: Mathematics

Limit Theorems For The Riemann Zeta Function

Author : Antanas Laurincikas
ISBN : 9789401720915
Genre : Mathematics
File Size : 49.2 MB
Format : PDF, ePub
Download : 431
Read : 1233

The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set? It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.
Category: Mathematics