THE NEW STATISTICS WITH R

Download The New Statistics With R ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to THE NEW STATISTICS WITH R book pdf for free now.

The New Statistics With R

Author : Andy Hector
ISBN : 9780198729051
Genre : Science
File Size : 40.97 MB
Format : PDF, ePub, Mobi
Download : 515
Read : 1174

Statistical methods are a key tool for all scientists working with data, but learning the basic mathematical skills can be one of the most challenging components of a biologist's training. This accessible book provides a contemporary introduction to the classical techniques and modern extensions of linear model analysis: one of the most useful approaches in the analysis of scientific data in the life and environmental sciences. It emphasizes an estimation-based approach that accounts for recent criticisms of the over-use of probability values, and introduces alternative approaches using information criteria. Statistics are introduced through worked analyses performed in R, the free open source programming language for statistics and graphics, which is rapidly becoming the standard software in many areas of science and technology. These analyses use real data sets from ecology, evolutionary biology and environmental science, and the data sets and R scripts are available as support material. The book's structure and user friendly style stem from the author's 20 years of experience teaching statistics to life and environmental scientists at both the undergraduate and graduate levels. The New Statistics with R is suitable for senior undergraduate and graduate students, professional researchers, and practitioners in the fields of ecology, evolution, environmental studies, and computational biology.
Category: Science

Understanding The New Statistics

Author : Geoff Cumming
ISBN : 9781136659188
Genre : Psychology
File Size : 74.34 MB
Format : PDF, ePub
Download : 490
Read : 436

This is the first book to introduce the new statistics - effect sizes, confidence intervals, and meta-analysis - in an accessible way. It is chock full of practical examples and tips on how to analyze and report research results using these techniques. The book is invaluable to readers interested in meeting the new APA Publication Manual guidelines by adopting the new statistics - which are more informative than null hypothesis significance testing, and becoming widely used in many disciplines. Accompanying the book is the Exploratory Software for Confidence Intervals (ESCI) package, free software that runs under Excel and is accessible at www.thenewstatistics.com. The book’s exercises use ESCI's simulations, which are highly visual and interactive, to engage users and encourage exploration. Working with the simulations strengthens understanding of key statistical ideas. There are also many examples, and detailed guidance to show readers how to analyze their own data using the new statistics, and practical strategies for interpreting the results. A particular strength of the book is its explanation of meta-analysis, using simple diagrams and examples. Understanding meta-analysis is increasingly important, even at undergraduate levels, because medicine, psychology and many other disciplines now use meta-analysis to assemble the evidence needed for evidence-based practice. The book’s pedagogical program, built on cognitive science principles, reinforces learning: Boxes provide "evidence-based" advice on the most effective statistical techniques. Numerous examples reinforce learning, and show that many disciplines are using the new statistics. Graphs are tied in with ESCI to make important concepts vividly clear and memorable. Opening overviews and end of chapter take-home messages summarize key points. Exercises encourage exploration, deep understanding, and practical applications. This highly accessible book is intended as the core text for any course that emphasizes the new statistics, or as a supplementary text for graduate and/or advanced undergraduate courses in statistics and research methods in departments of psychology, education, human development , nursing, and natural, social, and life sciences. Researchers and practitioners interested in understanding the new statistics, and future published research, will also appreciate this book. A basic familiarity with introductory statistics is assumed.
Category: Psychology

The Spss Guide To The New Statistical Analysis Of Data

Author : Susan B. Gerber
ISBN : 9781461222620
Genre : Mathematics
File Size : 73.58 MB
Format : PDF, Docs
Download : 309
Read : 1031

This companion to The New Statistical Analysis of Data by Anderson and Finn provides a hands-on guide to data analysis using SPSS. Included with this guide are instructions for obtaining the data sets to be analysed via the World Wide Web. First, the authors provide a brief review of using SPSS, and then, corresponding to the organisation of The New Statistical Analysis of Data, readers participate in analysing many of the data sets discussed in the book. In so doing, students both learn how to conduct reasonably sophisticated statistical analyses using SPSS whilst at the same time gaining an insight into the nature and purpose of statistical investigation.
Category: Mathematics

Modeling Techniques In Predictive Analytics With Python And R

Author : Thomas W. Miller
ISBN : 9780133892147
Genre : Computers
File Size : 23.95 MB
Format : PDF, Kindle
Download : 408
Read : 790

Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Category: Computers

Probability And Statistics With R

Author : Maria Dolores Ugarte
ISBN : 9781584888925
Genre : Mathematics
File Size : 69.21 MB
Format : PDF, Mobi
Download : 474
Read : 1197

Designed for an intermediate undergraduate course, Probability and Statistics with R shows students how to solve various statistical problems using both parametric and nonparametric techniques via the open source software R. It provides numerous real-world examples, carefully explained proofs, end-of-chapter problems, and illuminating graphs to facilitate hands-on learning. Integrating theory with practice, the text briefly introduces the syntax, structures, and functions of the S language, before covering important graphically and numerically descriptive methods. The next several chapters elucidate probability and random variables topics, including univariate and multivariate distributions. After exploring sampling distributions, the authors discuss point estimation, confidence intervals, hypothesis testing, and a wide range of nonparametric methods. With a focus on experimental design, the book also presents fixed- and random-effects models as well as randomized block and two-factor factorial designs. The final chapter describes simple and multiple regression analyses. Demonstrating that R can be used as a powerful teaching aid, this comprehensive text presents extensive treatments of data analysis using parametric and nonparametric techniques. It effectively links statistical concepts with R procedures, enabling the application of the language to the vast world of statistics.
Category: Mathematics

Vital Statistics E Book

Author : Stephen McKenzie
ISBN : 9780729581493
Genre : Medical
File Size : 74.54 MB
Format : PDF
Download : 137
Read : 444

Vital Statistics: an introduction to health science statistics e-book is a new Australian publication. This textbook draws on real world, health-related and local examples, with a broad appeal to the Health Sciences student. It demonstrates how an understanding of statistics is useful in the real world, as well as in statistics exams. Vital Statistics: an introduction to health science statistics e-book is a relatively easy-to-read book that will painlessly introduce or re-introduce you to the statistical basics before guiding you through more demanding statistical challenges. Written in recognition of Health Sciences courses which require knowledge of statistical literacy, this book guides the reader to an understanding of why, as well as how and when to use statistics. It explores: How data relates to information, and how information relates to knowledge How to use statistics to distinguish information from disinformation The importance of probability, in statistics and in life That inferential statistics allow us to infer from samples to populations, and how useful such inferences can be How to appropriately apply and interpret statistical measures of difference and association How qualitative and quantitative methods differ, and when it’s appropriate to use each The special statistical needs of the health sciences, and some especially health science relevant statistics The vital importance of computers in the statistical analysis of data, and gives an overview of the most commonly used analyses Real-life local examples of health statistics are presented, e.g. A study conducted at the Department of Obstetrics and Gynecology, University of Utah School of Medicine, explored whether there might be a systematic bias affecting the results of genetic specimen tests, which could affect their generalizability. Reader-friendly writing style t-tests/ ANOVA family of inferential statistics all use variants of the same basic formula Learning Objectives at the start of each chapter and Quick Reference Summaries at the end of each chapter provide the reader with a scope of the content within each chapter.
Category: Medical

Modeling Techniques In Predictive Analytics

Author : Thomas W. Miller
ISBN : 9780133886191
Genre : Computers
File Size : 51.20 MB
Format : PDF, Mobi
Download : 691
Read : 1083

To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Category: Computers

Introductory Statistics With R

Author : Peter Dalgaard
ISBN : 0387790535
Genre : Mathematics
File Size : 81.72 MB
Format : PDF, Mobi
Download : 583
Read : 819

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.
Category: Mathematics

Modern Data Science With R

Author : Benjamin S. Baumer
ISBN : 9781498724494
Genre : Law
File Size : 86.97 MB
Format : PDF
Download : 597
Read : 302

Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world problems with data. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling statistical questions. Contemporary data science requires a tight integration of knowledge from statistics, computer science, mathematics, and a domain of application. This book will help readers with some background in statistics and modest prior experience with coding develop and practice the appropriate skills to tackle complex data science projects. The book features a number of exercises and has a flexible organization conducive to teaching a variety of semester courses.
Category: Law

The Art Of R Programming

Author : Norman Matloff
ISBN : 9781593273842
Genre : Computers
File Size : 41.89 MB
Format : PDF, ePub
Download : 615
Read : 570

A guide to software development using the R programming language covers such topics as closures, recursion, anonymous functions, and debugging techniques.
Category: Computers