TENSORFLOW FOR DEEP LEARNING

Download Tensorflow For Deep Learning ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to TENSORFLOW FOR DEEP LEARNING book pdf for free now.

Tensorflow For Deep Learning

Author : Bharath Ramsundar
ISBN : 9781491980408
Genre : Computers
File Size : 58.86 MB
Format : PDF, ePub
Download : 163
Read : 1026

Learn how to solve challenging machine learning problems with TensorFlow, Google’s revolutionary new software library for deep learning. If you have some background in basic linear algebra and calculus, this practical book introduces machine-learning fundamentals by showing you how to design systems capable of detecting objects in images, understanding text, analyzing video, and predicting the properties of potential medicines. TensorFlow for Deep Learning teaches concepts through practical examples and helps you build knowledge of deep learning foundations from the ground up. It’s ideal for practicing developers with experience designing software systems, and useful for scientists and other professionals familiar with scripting but not necessarily with designing learning algorithms. Learn TensorFlow fundamentals, including how to perform basic computation Build simple learning systems to understand their mathematical foundations Dive into fully connected deep networks used in thousands of applications Turn prototypes into high-quality models with hyperparameter optimization Process images with convolutional neural networks Handle natural language datasets with recurrent neural networks Use reinforcement learning to solve games such as tic-tac-toe Train deep networks with hardware including GPUs and tensor processing units
Category: Computers

Deep Learning For Beginners With Tensorflow

Author : Mark Smart
ISBN : 1723338494
Genre :
File Size : 41.25 MB
Format : PDF, ePub, Mobi
Download : 288
Read : 509

This book is an exploration of deep learning in Python using TensorFlow. The author guides you on how to create machine learning models using TensorFlow. You will know the initial steps of getting started with TensorFlow in Python. This involves installing TensorFlow and writing your first code. TensorFlow works using the concept of graphs. The author helps you know how expressions are represented into graphs in TensorFlow. Deep learning in Python with TensorFlow simply involves the creation of neural network models. The author helps you understand how to create neural network models with TensorFlow. You are guided on how to train such models with data of various types. Examples of such data include images and text. The process of loading your own data into TensorFlow for training neural network models has also been discussed. You will also know how to use the inbuilt data for training your neural network models. You will learn from this book: Getting started Building a Neural Network Working with Images Importing Data Subjects include: tensorflow python, deep learning with python, tensorflow machine learning, tensor flow, tensorflow deep learning cookbook, tensorflow for deep learning, tensorflow for dummies, tensorflow books, machine learning with tensorflow, tensorflow c++, concept of graphs, neural network, neural networks python, tensorflow with neural network.
Category:

Tensorflow Machine Learning Projects

Author : Ankit Jain
ISBN : 9781789132403
Genre : Computers
File Size : 87.67 MB
Format : PDF, Mobi
Download : 143
Read : 187

Implement TensorFlow's offerings such as TensorBoard, TensorFlow.js, TensorFlow Probability, and TensorFlow Lite to build smart automation projects Key Features Use machine learning and deep learning principles to build real-world projects Get to grips with TensorFlow's impressive range of module offerings Implement projects on GANs, reinforcement learning, and capsule network Book Description TensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits—simplicity, efficiency, and flexibility—of using TensorFlow in various real-world projects. With the help of this book, you’ll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem. To start with, you’ll get to grips with using TensorFlow for machine learning projects; you’ll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification. As you make your way through the book, you’ll build projects in various real-world domains, incorporating natural language processing (NLP), the Gaussian process, autoencoders, recommender systems, and Bayesian neural networks, along with trending areas such as Generative Adversarial Networks (GANs), capsule networks, and reinforcement learning. You’ll learn how to use the TensorFlow on Spark API and GPU-accelerated computing with TensorFlow to detect objects, followed by how to train and develop a recurrent neural network (RNN) model to generate book scripts. By the end of this book, you’ll have gained the required expertise to build full-fledged machine learning projects at work. What you will learn Understand the TensorFlow ecosystem using various datasets and techniques Create recommendation systems for quality product recommendations Build projects using CNNs, NLP, and Bayesian neural networks Play Pac-Man using deep reinforcement learning Deploy scalable TensorFlow-based machine learning systems Generate your own book script using RNNs Who this book is for TensorFlow Machine Learning Projects is for you if you are a data analyst, data scientist, machine learning professional, or deep learning enthusiast with basic knowledge of TensorFlow. This book is also for you if you want to build end-to-end projects in the machine learning domain using supervised, unsupervised, and reinforcement learning techniques
Category: Computers

Hands On Deep Learning Algorithms With Python

Author : Sudharsan Ravichandiran
ISBN : 9781789344516
Genre : Computers
File Size : 44.56 MB
Format : PDF, ePub
Download : 488
Read : 1074

Understand basic to advanced deep learning algorithms, the mathematical principles behind them, and their practical applications. Key Features Get up-to-speed with building your own neural networks from scratch Gain insights into the mathematical principles behind deep learning algorithms Implement popular deep learning algorithms such as CNNs, RNNs, and more using TensorFlow Book Description Deep learning is one of the most popular domains in the AI space, allowing you to develop multi-layered models of varying complexities. This book introduces you to popular deep learning algorithms—from basic to advanced—and shows you how to implement them from scratch using TensorFlow. Throughout the book, you will gain insights into each algorithm, the mathematical principles behind it, and how to implement it in the best possible manner. The book starts by explaining how you can build your own neural networks, followed by introducing you to TensorFlow, the powerful Python-based library for machine learning and deep learning. Moving on, you will get up to speed with gradient descent variants, such as NAG, AMSGrad, AdaDelta, Adam, and Nadam. The book will then provide you with insights into RNNs and LSTM and how to generate song lyrics with RNN. Next, you will master the math for convolutional and capsule networks, widely used for image recognition tasks. Then you learn how machines understand the semantics of words and documents using CBOW, skip-gram, and PV-DM. Afterward, you will explore various GANs, including InfoGAN and LSGAN, and autoencoders, such as contractive autoencoders and VAE. By the end of this book, you will be equipped with all the skills you need to implement deep learning in your own projects. What you will learn Implement basic-to-advanced deep learning algorithms Master the mathematics behind deep learning algorithms Become familiar with gradient descent and its variants, such as AMSGrad, AdaDelta, Adam, and Nadam Implement recurrent networks, such as RNN, LSTM, GRU, and seq2seq models Understand how machines interpret images using CNN and capsule networks Implement different types of generative adversarial network, such as CGAN, CycleGAN, and StackGAN Explore various types of autoencoder, such as Sparse autoencoders, DAE, CAE, and VAE Who this book is for If you are a machine learning engineer, data scientist, AI developer, or simply want to focus on neural networks and deep learning, this book is for you. Those who are completely new to deep learning, but have some experience in machine learning and Python programming, will also find the book very helpful.
Category: Computers

Hands On Machine Learning With Scikit Learn Keras And Tensorflow

Author : Aurélien Géron
ISBN : 9781492032618
Genre : Computers
File Size : 59.95 MB
Format : PDF, Kindle
Download : 262
Read : 823

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
Category: Computers

Hands On Neural Networks With Tensorflow 2 0

Author : Paolo Galeone
ISBN : 9781789613797
Genre : Computers
File Size : 73.28 MB
Format : PDF, Kindle
Download : 253
Read : 1013

A comprehensive guide to developing neural network-based solutions using TensorFlow 2.0 Key Features Understand the basics of machine learning and discover the power of neural networks and deep learning Explore the structure of the TensorFlow framework and understand how to transition to TF 2.0 Solve any deep learning problem by developing neural network-based solutions using TF 2.0 Book Description TensorFlow, the most popular and widely used machine learning framework, has made it possible for almost anyone to develop machine learning solutions with ease. With TensorFlow (TF) 2.0, you'll explore a revamped framework structure, offering a wide variety of new features aimed at improving productivity and ease of use for developers. This book covers machine learning with a focus on developing neural network-based solutions. You'll start by getting familiar with the concepts and techniques required to build solutions to deep learning problems. As you advance, you’ll learn how to create classifiers, build object detection and semantic segmentation networks, train generative models, and speed up the development process using TF 2.0 tools such as TensorFlow Datasets and TensorFlow Hub. By the end of this TensorFlow book, you'll be ready to solve any machine learning problem by developing solutions using TF 2.0 and putting them into production. What you will learn Grasp machine learning and neural network techniques to solve challenging tasks Apply the new features of TF 2.0 to speed up development Use TensorFlow Datasets (tfds) and the tf.data API to build high-efficiency data input pipelines Perform transfer learning and fine-tuning with TensorFlow Hub Define and train networks to solve object detection and semantic segmentation problems Train Generative Adversarial Networks (GANs) to generate images and data distributions Use the SavedModel file format to put a model, or a generic computational graph, into production Who this book is for If you're a developer who wants to get started with machine learning and TensorFlow, or a data scientist interested in developing neural network solutions in TF 2.0, this book is for you. Experienced machine learning engineers who want to master the new features of the TensorFlow framework will also find this book useful. Basic knowledge of calculus and a strong understanding of Python programming will help you grasp the topics covered in this book.
Category: Computers

What S New In Tensorflow 2 0

Author : Ajay Baranwal
ISBN : 9781838828837
Genre : Computers
File Size : 34.39 MB
Format : PDF, ePub, Mobi
Download : 167
Read : 634

Get to grips with key structural changes in TensorFlow 2.0 Key Features Explore TF Keras APIs and strategies to run GPUs, TPUs, and compatible APIs across the TensorFlow ecosystem Learn and implement best practices for building data ingestion pipelines using TF 2.0 APIs Migrate your existing code from TensorFlow 1.x to TensorFlow 2.0 seamlessly Book Description TensorFlow is an end-to-end machine learning platform for experts as well as beginners, and its new version, TensorFlow 2.0 (TF 2.0), improves its simplicity and ease of use. This book will help you understand and utilize the latest TensorFlow features. What's New in TensorFlow 2.0 starts by focusing on advanced concepts such as the new TensorFlow Keras APIs, eager execution, and efficient distribution strategies that help you to run your machine learning models on multiple GPUs and TPUs. The book then takes you through the process of building data ingestion and training pipelines, and it provides recommendations and best practices for feeding data to models created using the new tf.keras API. You'll explore the process of building an inference pipeline using TF Serving and other multi-platform deployments before moving on to explore the newly released AIY, which is essentially do-it-yourself AI. This book delves into the core APIs to help you build unified convolutional and recurrent layers and use TensorBoard to visualize deep learning models using what-if analysis. By the end of the book, you'll have learned about compatibility between TF 2.0 and TF 1.x and be able to migrate to TF 2.0 smoothly. What you will learn Implement tf.keras APIs in TF 2.0 to build, train, and deploy production-grade models Build models with Keras integration and eager execution Explore distribution strategies to run models on GPUs and TPUs Perform what-if analysis with TensorBoard across a variety of models Discover Vision Kit, Voice Kit, and the Edge TPU for model deployments Build complex input data pipelines for ingesting large training datasets Who this book is for If you’re a data scientist, machine learning practitioner, deep learning researcher, or AI enthusiast who wants to migrate code to TensorFlow 2.0 and explore the latest features of TensorFlow 2.0, this book is for you. Prior experience with TensorFlow and Python programming is necessary to understand the concepts covered in the book.
Category: Computers

Learning Tensorflow

Author : Tom Hope
ISBN : 9781491978481
Genre : Computers
File Size : 33.79 MB
Format : PDF, ePub, Mobi
Download : 957
Read : 207

Roughly inspired by the human brain, deep neural networks trained with large amounts of data can solve complex tasks with unprecedented accuracy. This practical book provides an end-to-end guide to TensorFlow, the leading open source software library that helps you build and train neural networks for computer vision, natural language processing (NLP), speech recognition, and general predictive analytics. Authors Tom Hope, Yehezkel Resheff, and Itay Lieder provide a hands-on approach to TensorFlow fundamentals for a broad technical audience—from data scientists and engineers to students and researchers. You’ll begin by working through some basic examples in TensorFlow before diving deeper into topics such as neural network architectures, TensorBoard visualization, TensorFlow abstraction libraries, and multithreaded input pipelines. Once you finish this book, you’ll know how to build and deploy production-ready deep learning systems in TensorFlow. Get up and running with TensorFlow, rapidly and painlessly Learn how to use TensorFlow to build deep learning models from the ground up Train popular deep learning models for computer vision and NLP Use extensive abstraction libraries to make development easier and faster Learn how to scale TensorFlow, and use clusters to distribute model training Deploy TensorFlow in a production setting
Category: Computers

Tensorflow Machine Learning Cookbook

Author : Nick McClure
ISBN : 9781789130768
Genre : Computers
File Size : 31.12 MB
Format : PDF, Docs
Download : 114
Read : 798

Skip the theory and get the most out of Tensorflow to build production-ready machine learning models Key Features Exploit the features of Tensorflow to build and deploy machine learning models Train neural networks to tackle real-world problems in Computer Vision and NLP Handy techniques to write production-ready code for your Tensorflow models Book Description TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and allow you to dig deeper and gain more insights into your data than ever before. With the help of this book, you will work with recipes for training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and more. You will explore RNNs, CNNs, GANs, reinforcement learning, and capsule networks, each using Google's machine learning library, TensorFlow. Through real-world examples, you will get hands-on experience with linear regression techniques with TensorFlow. Once you are familiar and comfortable with the TensorFlow ecosystem, you will be shown how to take it to production. By the end of the book, you will be proficient in the field of machine intelligence using TensorFlow. You will also have good insight into deep learning and be capable of implementing machine learning algorithms in real-world scenarios. What you will learn Become familiar with the basic features of the TensorFlow library Get to know Linear Regression techniques with TensorFlow Learn SVMs with hands-on recipes Implement neural networks to improve predictive modeling Apply NLP and sentiment analysis to your data Master CNN and RNN through practical recipes Implement the gradient boosted random forest to predict housing prices Take TensorFlow into production Who this book is for If you are a data scientist or a machine learning engineer with some knowledge of linear algebra, statistics, and machine learning, this book is for you. If you want to skip the theory and build production-ready machine learning models using Tensorflow without reading pages and pages of material, this book is for you. Some background in Python programming is assumed.
Category: Computers

Hands On Deep Learning For Images With Tensorflow

Author : Will Ballard
ISBN : 9781789532517
Genre : Computers
File Size : 88.18 MB
Format : PDF, ePub, Mobi
Download : 338
Read : 253

Explore TensorFlow's capabilities to perform efficient deep learning on images Key Features Discover image processing for machine vision Build an effective image classification system using the power of CNNs Leverage TensorFlow’s capabilities to perform efficient deep learning Book Description TensorFlow is Google’s popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks. Hands-On Deep Learning for Images with TensorFlow shows you the practical implementations of real-world projects, teaching you how to leverage TensorFlow’s capabilities to perform efficient image processing using the power of deep learning. With the help of this book, you will get to grips with the different paradigms of performing deep learning such as deep neural nets and convolutional neural networks, followed by understanding how they can be implemented using TensorFlow. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow and Keras. What you will learn Build machine learning models particularly focused on the MNIST digits Work with Docker and Keras to build an image classifier Understand natural language models to process text and images Prepare your dataset for machine learning Create classical, convolutional, and deep neural networks Create a RESTful image classification server Who this book is for Hands-On Deep Learning for Images with TensorFlow is for you if you are an application developer, data scientist, or machine learning practitioner looking to integrate machine learning into application software and master deep learning by implementing practical projects in TensorFlow. Knowledge of Python programming and basics of deep learning are required to get the best out of this book.
Category: Computers