SET-THEORY-AND-THE-CONTINUUM-PROBLEM

Download Set-theory-and-the-continuum-problem ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to SET-THEORY-AND-THE-CONTINUUM-PROBLEM book pdf for free now.

Set Theory And The Continuum Hypothesis

Author : Paul J. Cohen
ISBN : 9780486469218
Genre : Mathematics
File Size : 81.43 MB
Format : PDF, Mobi
Download : 107
Read : 320

This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
Category: Mathematics

The Consistency Of The Axiom Of Choice And Of The Generalized Continuum Hypothesis With The Axioms Of Set Theory

Author : Kurt G?del
ISBN : 0691079277
Genre : Mathematics
File Size : 37.76 MB
Format : PDF, Mobi
Download : 135
Read : 408

Kurt Gödel, mathematician and logician, was one of the most influential thinkers of the twentieth century. Gödel fled Nazi Germany, fearing for his Jewish wife and fed up with Nazi interference in the affairs of the mathematics institute at the University of Göttingen. In 1933 he settled at the Institute for Advanced Study in Princeton, where he joined the group of world-famous mathematicians who made up its original faculty. His 1940 book, better known by its short title, The Consistency of the Continuum Hypothesis, is a classic of modern mathematics. The continuum hypothesis, introduced by mathematician George Cantor in 1877, states that there is no set of numbers between the integers and real numbers. It was later included as the first of mathematician David Hilbert's twenty-three unsolved math problems, famously delivered as a manifesto to the field of mathematics at the International Congress of Mathematicians in Paris in 1900. In The Consistency of the Continuum Hypothesis Gödel set forth his proof for this problem. In 1999, Time magazine ranked him higher than fellow scientists Edwin Hubble, Enrico Fermi, John Maynard Keynes, James Watson, Francis Crick, and Jonas Salk. He is most renowned for his proof in 1931 of the 'incompleteness theorem,' in which he demonstrated that there are problems that cannot be solved by any set of rules or procedures. His proof wrought fruitful havoc in mathematics, logic, and beyond.
Category: Mathematics

Set Theory And The Continuum Problem

Author : Raymond M. Smullyan
ISBN : 0486474844
Genre : Mathematics
File Size : 72.29 MB
Format : PDF, ePub, Mobi
Download : 967
Read : 213

A lucid, elegant, and complete survey of set theory, this three-part treatment explores axiomatic set theory, the consistency of the continuum hypothesis, and forcing and independence results. 1996 edition.
Category: Mathematics

From The Calculus To Set Theory 1630 1910

Author : I. Grattan-Guinness
ISBN : 0691070822
Genre : Mathematics
File Size : 41.62 MB
Format : PDF, Docs
Download : 574
Read : 678

From the Calculus to Set Theory traces the development of the calculus from the early seventeenth century through its expansion into mathematical analysis to the developments in set theory and the foundations of mathematics in the early twentieth century. It chronicles the work of mathematicians from Descartes and Newton to Russell and Hilbert and many, many others while emphasizing foundational questions and underlining the continuity of developments in higher mathematics. The other contributors to this volume are H. J. M. Bos, R. Bunn, J. W. Dauben, T. W. Hawkins, and K. Møller-Pedersen.
Category: Mathematics

The Philosophy Of Set Theory

Author : Mary Tiles
ISBN : 0486435202
Genre : Mathematics
File Size : 78.90 MB
Format : PDF, Kindle
Download : 346
Read : 516

A century ago, Georg Cantor demonstrated the possibility of a series of transfinite infinite numbers. His methods, unorthodox for the time, enabled him to derive theorems that established a mathematical reality for a hierarchy of infinities. Cantor's innovation was opposed, and ignored, by the establishment; years later, the value of his work was recognized and appreciated as a landmark in mathematical thought, forming the beginning of set theory and the foundation for most of contemporary mathematics. As Cantor's sometime collaborator, David Hilbert, remarked, "No one will drive us from the paradise that Cantor has created." This volume offers a guided tour of modern mathematics' Garden of Eden, beginning with perspectives on the finite universe and classes and Aristotelian logic. Author Mary Tiles further examines permutations, combinations, and infinite cardinalities; numbering the continuum; Cantor's transfinite paradise; axiomatic set theory; logical objects and logical types; and independence results and the universe of sets. She concludes with views of the constructs and reality of mathematical structure. Philosophers with only a basic grounding in mathematics, as well as mathematicians who have taken only an introductory course in philosophy, will find an abundance of intriguing topics in this text, which is appropriate for undergraduate-and graduate-level courses.
Category: Mathematics

The Real Numbers

Author : John Stillwell
ISBN : 9783319015774
Genre : Mathematics
File Size : 42.71 MB
Format : PDF, Mobi
Download : 603
Read : 443

While most texts on real analysis are content to assume the real numbers, or to treat them only briefly, this text makes a serious study of the real number system and the issues it brings to light. Analysis needs the real numbers to model the line, and to support the concepts of continuity and measure. But these seemingly simple requirements lead to deep issues of set theory—uncountability, the axiom of choice, and large cardinals. In fact, virtually all the concepts of infinite set theory are needed for a proper understanding of the real numbers, and hence of analysis itself. By focusing on the set-theoretic aspects of analysis, this text makes the best of two worlds: it combines a down-to-earth introduction to set theory with an exposition of the essence of analysis—the study of infinite processes on the real numbers. It is intended for senior undergraduates, but it will also be attractive to graduate students and professional mathematicians who, until now, have been content to "assume" the real numbers. Its prerequisites are calculus and basic mathematics. Mathematical history is woven into the text, explaining how the concepts of real number and infinity developed to meet the needs of analysis from ancient times to the late twentieth century. This rich presentation of history, along with a background of proofs, examples, exercises, and explanatory remarks, will help motivate the reader. The material covered includes classic topics from both set theory and real analysis courses, such as countable and uncountable sets, countable ordinals, the continuum problem, the Cantor–Schröder–Bernstein theorem, continuous functions, uniform convergence, Zorn's lemma, Borel sets, Baire functions, Lebesgue measure, and Riemann integrable functions.
Category: Mathematics

Cantorian Set Theory And Limitation Of Size

Author : Michael Hallett
ISBN : 0198532830
Genre : Mathematics
File Size : 84.10 MB
Format : PDF, ePub, Mobi
Download : 422
Read : 1327

Cantor's ideas formed the basis for set theory and also for the mathematical treatment of the concept of infinity. The philosophical and heuristic framework he developed had a lasting effect on modern mathematics, and is the recurrent theme of this volume. Hallett explores Cantor's ideas and, in particular, their ramifications for Zermelo-Frankel set theory.
Category: Mathematics

Empiricism Logic And Mathematics

Author : Hans Hahn
ISBN : 9789400989825
Genre : Science
File Size : 64.78 MB
Format : PDF
Download : 281
Read : 794

The role Hans Hahn played in the Vienna Circle has not always been sufficiently appreciated. It was important in several ways. In the ftrst place, Hahn belonged to the trio of the original planners of the Circle. As students at the University of Vienna and throughout the fIrst decade of this century, he and his friends, Philipp Frank and Otto Neurath, met more or less regularly to discuss philosophical questions. When Hahn accepted his fIrSt professorial position, at the University of Czernowitz in the north east of the Austrian empire, and the paths of the three friends parted, they decided to continue such informal discussions at some future time - perhaps in a somewhat larger group and with the cooperation of a philosopher from the university. Various events delayed the execution of the project. Drafted into the Austrian army during the first world war" Hahn was wounded on the Italian front. Toward the end of the war he accepted an offer from the University of Bonn extended in recognition of his remarkable 1 mathematical achievements. He remained in Bonn until the spring of 1921 when he returm:d to Vienna and a chair of mathe matics at his alma mater. There, in 1922, the Mach-Boltzmann professorship for the philosophy of the inductive sciences became vacant by the death of Adolf Stohr; and Hahn saw a chance to realize his and his friends' old plan.
Category: Science

The Geometry Of Ren Descartes

Author : René Descartes
ISBN : 9780486158174
Genre : Mathematics
File Size : 56.68 MB
Format : PDF
Download : 947
Read : 471

The great work that founded analytical geometry. Includes the original French text, Descartes' own diagrams, and the definitive Smith-Latham translation. "The greatest single step ever made in the progress of the exact sciences." — John Stuart Mill.
Category: Mathematics

Set Theory And Its Philosophy

Author : Michael Potter
ISBN : 9780191556432
Genre : Philosophy
File Size : 81.9 MB
Format : PDF, ePub, Docs
Download : 983
Read : 821

Michael Potter presents a comprehensive new philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. Potter offers a thorough account of cardinal and ordinal arithmetic, and the various axiom candidates. He discusses in detail the project of set-theoretic reduction, which aims to interpret the rest of mathematics in terms of set theory. The key question here is how to deal with the paradoxes that bedevil set theory. Potter offers a strikingly simple version of the most widely accepted response to the paradoxes, which classifies sets by means of a hierarchy of levels. What makes the book unique is that it interweaves a careful presentation of the technical material with a penetrating philosophical critique. Potter does not merely expound the theory dogmatically but at every stage discusses in detail the reasons that can be offered for believing it to be true. Set Theory and its Philosophy is a key text for philosophy, mathematical logic, and computer science.
Category: Philosophy