PYTHON MACHINE LEARNING

Download Python Machine Learning ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to PYTHON MACHINE LEARNING book pdf for free now.

Python Machine Learning

Author : Sebastian Raschka
ISBN : 9781783555147
Genre : Computers
File Size : 88.82 MB
Format : PDF, ePub, Mobi
Download : 627
Read : 1027

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
Category: Computers

Python Machine Learning From Scratch

Author : Jonathan Adam
ISBN : 1725929988
Genre :
File Size : 62.82 MB
Format : PDF, Mobi
Download : 294
Read : 324

***** BUY NOW (will soon return to 25.89 $)******Free eBook for customers who purchase the print book from Amazon****** Are you thinking of learning more about Machine Learning using Python? (For Beginners) This book would seek to explain common terms and algorithms in an intuitive way. The author used a progressive approach whereby we start out slowly and improve on the complexity of our solutions. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using machine learning.Instead of tough math formulas, this book contains several graphs and images which detail all important Machine Learning concepts and their applications. Target Users The book designed for a variety of target audiences. The most suitable users would include: Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Supervised Learning Algorithms Unsupervised Learning Algorithms Semi-supervised Learning Algorithms Reinforcement Learning Algorithms Overfitting and underfitting correctness The Bias-Variance Trade-off Feature Extraction and Selection A Regression Example: Predicting Boston Housing Prices Import Libraries: How to forecast and Predict Popular Classification Algorithms Introduction to K Nearest Neighbors Introduction to Support Vector Machine Example of Clustering Running K-means with Scikit-Learn Introduction to Deep Learning using TensorFlow Deep Learning Compared to Other Machine Learning Approaches Applications of Deep Learning How to run the Neural Network using TensorFlow Cases of Study with Real Data Sources & References Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: If you want to smash Machine Learning from scratch, this book is for you. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK.Q: Does this book include everything I need to become a Machine Learning expert?A: Unfortunately, no. This book is designed for readers taking their first steps in Machine Learning and further learning will be required beyond this book to master all aspects of Machine Learning.Q: Can I have a refund if this book is not fitted for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected] Sciences Company offers you a free eBooks at http://aisciences.net/free/
Category:

Python Machine Learning

Author : Wei-Meng Lee
ISBN : 9781119545637
Genre : Computers
File Size : 52.50 MB
Format : PDF, ePub, Mobi
Download : 250
Read : 627

Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level.
Category: Computers

Python Machine Learning

Author : Samuel Burns
ISBN : 1090434162
Genre : Computers
File Size : 39.24 MB
Format : PDF, ePub, Docs
Download : 320
Read : 395

You are interested in becoming a machine learning expert but don't know where to start from? Don't worry you don't need a big boring and expensive Textbook. This book is the best guide for you. Get your copy NOW!! Why this guide is the best one for Data Scientist? Here are the reasons:The author has explored everything about machine learning and deep learning right from the basics. A simple language has been used. Many examples have been given, both theoretically and programmatically. Screenshots showing program outputs have been added. The book is written chronologically, in a step-by-step manner. Book Objectives: The Aims and Objectives of the Book: To help you understand the basics of machine learning and deep learning. Understand the various categories of machine learning algorithms. To help you understand how different machine learning algorithms work. You will learn how to implement various machine learning algorithms programmatically in Python. To help you learn how to use Scikit-Learn and TensorFlow Libraries in Python. To help you know how to analyze data programmatically to extract patterns, trends, and relationships between variables. Who this Book is for? Here are the target readers for this book: Anybody who is a complete beginner to machine learning in Python. Anybody who needs to advance their programming skills in Python for machine learning programming and deep learning. Professionals in data science. Professors, lecturers or tutors who are looking to find better ways to explain machine learning to their students in the simplest and easiest way. Students and academicians, especially those focusing on neural networks, machine learning, and deep learning. What do you need for this Book? You are required to have installed the following on your computer: Python 3.X Numpy Pandas Matplotlib The Author guides you on how to install the rest of the Python libraries that are required for machine learning and deep learning. What is inside the book: Getting Started Environment Setup Using Scikit-Learn Linear Regression with Scikit-Learn k-Nearest Neighbors Algorithm K-Means Clustering Support Vector Machines Neural Networks with Scikit-learn Random Forest Algorithm Using TensorFlow Recurrent Neural Networks with TensorFlow Linear Classifier This book will teach you machine learning classifiers using scikit-learn and tenserflow . The book provides a great overview of functions you can use to build a support vector machine, decision tree, perceptron, and k-nearest neighbors. Thanks of this book you will be able to set up a learning pipeline that handles input and output data, pre-processes it, selects meaningful features, and applies a classifier on it. This book offers a lot of insight into machine learning for both beginners, as well as for professionals, who already use some machine learning techniques. Concepts and the background of these concepts are explained clearly in this tutorial.
Category: Computers

Python Machine Learning

Author : Oliver Soranson
ISBN : 1706512112
Genre :
File Size : 71.31 MB
Format : PDF, ePub
Download : 660
Read : 1123

You must have gotten the opportunity to pay for parking at a mall, where a machine is able to tell the amount of money you owe depending on how long your car was in the parking lot and probably a few other features. However, have you ever wondered just how the parking meter is able to differentiate between currencies and give you the right change? Furthermore, have you ever wondered how applications such as Uber can predict the amount of time it will take you to get home to such a high degree of accuracy yet traffic can be so unpredictable? If you have ever asked yourself questions about the basic or especially the complex predictions and conclusions machines are making these days, then your answer lies in Machine learning. Human beings have different ways in which they learn, some of the methods including experience or even having someone teach them. Therefore, to try to make machines even more useful to human beings, it is possible to teach machines to make decisions in several ways, and these can learn and have faster and more accurate output compared to how a human being would compete. People usually understand the concept of how a machine will do something you have programmed it to do because people came to terms with that years ago. However, what still fascinates people is how a machine is able to make decisions independently by considering a situation and even making a prediction that turns out to be true. Machine learning is at a very high-level today when you compare to a few years back, so that would make you wonder just how advanced machines will be in the next 20 to 30 years. It is highly likely that machines will become better versions of us, but we hope they will never get so independent and intelligent that they eventually decide to rule over us. The objective of writing this book is to help a beginner to understand the basics of machine learning to the point of even training a machine to carry out some functions. This book also explains the advantages associated with using Python, since an individual does not necessarily have to be an expert coder to start using it. Some of the main topics discussed in this book include: The history of machine learning Key machine learning definitions Application of machine learning Key elements of machine learning Types of artificial intelligence learning Mathematical notation for machine learning Terminologies in use for machine learning Roadmap for building machine-learning systems Using python for machine learning (and understanding variables, essential operator, functions, conditional statements, and loop) Types of artificial neural networks Artificial neural network layers Advantages and disadvantages of neural networks Machine learning classification Types of classifiers in python machine learning Machine learning classification models Metrics for evaluating machine learning classification models Machine learning training model Developing a machine learning model with python Training simple machine learning algorithms for classification Building good training sets Would you like to know everything you need about Python Machine Learning? Download this book and commence your journey to learning how to understand Python Machine Learning for Beginners and Artificial Intelligence.
Category:

Machine Learning Algorithms From Scratch With Python

Author : Jason Brownlee
ISBN :
Genre : Computers
File Size : 85.39 MB
Format : PDF
Download : 988
Read : 1259

You must understand algorithms to get good at machine learning. The problem is that they are only ever explained using Math. No longer. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work. Using clear explanations, simple pure Python code (no libraries!) and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement a suite of linear, nonlinear and ensemble machine learning algorithms from scratch.
Category: Computers

Hands On Deep Learning Algorithms With Python

Author : Sudharsan Ravichandiran
ISBN : 9781789344516
Genre : Computers
File Size : 22.50 MB
Format : PDF, Kindle
Download : 736
Read : 1226

Understand basic to advanced deep learning algorithms, the mathematical principles behind them, and their practical applications. Key Features Get up-to-speed with building your own neural networks from scratch Gain insights into the mathematical principles behind deep learning algorithms Implement popular deep learning algorithms such as CNNs, RNNs, and more using TensorFlow Book Description Deep learning is one of the most popular domains in the AI space, allowing you to develop multi-layered models of varying complexities. This book introduces you to popular deep learning algorithms—from basic to advanced—and shows you how to implement them from scratch using TensorFlow. Throughout the book, you will gain insights into each algorithm, the mathematical principles behind it, and how to implement it in the best possible manner. The book starts by explaining how you can build your own neural networks, followed by introducing you to TensorFlow, the powerful Python-based library for machine learning and deep learning. Moving on, you will get up to speed with gradient descent variants, such as NAG, AMSGrad, AdaDelta, Adam, and Nadam. The book will then provide you with insights into RNNs and LSTM and how to generate song lyrics with RNN. Next, you will master the math for convolutional and capsule networks, widely used for image recognition tasks. Then you learn how machines understand the semantics of words and documents using CBOW, skip-gram, and PV-DM. Afterward, you will explore various GANs, including InfoGAN and LSGAN, and autoencoders, such as contractive autoencoders and VAE. By the end of this book, you will be equipped with all the skills you need to implement deep learning in your own projects. What you will learn Implement basic-to-advanced deep learning algorithms Master the mathematics behind deep learning algorithms Become familiar with gradient descent and its variants, such as AMSGrad, AdaDelta, Adam, and Nadam Implement recurrent networks, such as RNN, LSTM, GRU, and seq2seq models Understand how machines interpret images using CNN and capsule networks Implement different types of generative adversarial network, such as CGAN, CycleGAN, and StackGAN Explore various types of autoencoder, such as Sparse autoencoders, DAE, CAE, and VAE Who this book is for If you are a machine learning engineer, data scientist, AI developer, or simply want to focus on neural networks and deep learning, this book is for you. Those who are completely new to deep learning, but have some experience in machine learning and Python programming, will also find the book very helpful.
Category: Computers

Python Machine Learning By Example

Author : Yuxi (Hayden) Liu
ISBN : 9781789617559
Genre : Computers
File Size : 73.14 MB
Format : PDF, Docs
Download : 193
Read : 441

Grasp machine learning concepts, techniques, and algorithms with the help of real-world examples using Python libraries such as TensorFlow and scikit-learn Key Features Exploit the power of Python to explore the world of data mining and data analytics Discover machine learning algorithms to solve complex challenges faced by data scientists today Use Python libraries such as TensorFlow and Keras to create smart cognitive actions for your projects Book Description The surge in interest in machine learning (ML) is due to the fact that it revolutionizes automation by learning patterns in data and using them to make predictions and decisions. If you’re interested in ML, this book will serve as your entry point to ML. Python Machine Learning By Example begins with an introduction to important ML concepts and implementations using Python libraries. Each chapter of the book walks you through an industry adopted application. You’ll implement ML techniques in areas such as exploratory data analysis, feature engineering, and natural language processing (NLP) in a clear and easy-to-follow way. With the help of this extended and updated edition, you’ll understand how to tackle data-driven problems and implement your solutions with the powerful yet simple Python language and popular Python packages and tools such as TensorFlow, scikit-learn, gensim, and Keras. To aid your understanding of popular ML algorithms, the book covers interesting and easy-to-follow examples such as news topic modeling and classification, spam email detection, stock price forecasting, and more. By the end of the book, you’ll have put together a broad picture of the ML ecosystem and will be well-versed with the best practices of applying ML techniques to make the most out of new opportunities. What you will learn Understand the important concepts in machine learning and data science Use Python to explore the world of data mining and analytics Scale up model training using varied data complexities with Apache Spark Delve deep into text and NLP using Python libraries such NLTK and gensim Select and build an ML model and evaluate and optimize its performance Implement ML algorithms from scratch in Python, TensorFlow, and scikit-learn Who this book is for If you’re a machine learning aspirant, data analyst, or data engineer highly passionate about machine learning and want to begin working on ML assignments, this book is for you. Prior knowledge of Python coding is assumed and basic familiarity with statistical concepts will be beneficial although not necessary.
Category: Computers

Machine Learning With Python

Author : David V.
ISBN : 1544933495
Genre :
File Size : 51.49 MB
Format : PDF, ePub
Download : 568
Read : 582

This book is an exploration of machine learning in Python. The first step is a guide for you on how to get started with machine learning in Python. All the steps which are necessary for you to do machine learning are discussed. You are guided on how to implement the concept of machine learning with Python and the SciPy platform. You are first guided on how to install the various Python libraries which are necessary for such a project to work. The installation methods for the various operating systems are explored. The book also discusses how you can use Python and matplotlib for the purpose of Data Exploration. You will learn how to use these two to load your data, explore data, and Visualizing the Data Images by use of matplotlib. The Principle Component Analysis (PCA) is also examined in detail. Logic Regression, which is very crucial in machine learning is discussed, soyou will learn how to implement it in Python. The following topics are discussed in this book: - Getting Started - Python and matplotlib for Data Exploration - Logistic Regression
Category:

Python Machine Learning From Scratch

Author : Daniel Nedal
ISBN : 1724264370
Genre :
File Size : 66.60 MB
Format : PDF, Kindle
Download : 798
Read : 388

***BUY NOW (Will soon return to 20.59) ******Free eBook for customers who purchase the print book from Amazon*** Are you thinking of learning more about Machine Learning using Python? This book would seek to explain common terms and algorithms in an intuitive way. The author used a progressive approach whereby we start out slowly and improve on the complexity of our solutions. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses. To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using machine learning. Instead of tough math formulas, this book contains several graphs and images which detail all important Machine Learning concepts and their applications. Target Users The book designed for a variety of target audiences. The most suitable users would include: Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Supervised Learning Algorithms Unsupervised Learning Algorithms Semi-supervised Learning Algorithms Reinforcement Learning Algorithms Overfitting and underfitting correctness The Bias-Variance Trade-off Feature Extraction and Selection A Regression Example: Predicting Boston Housing Prices Import Libraries: How to forecast and Predict Popular Classification Algorithms Introduction to K Nearest Neighbors Introduction to Support Vector Machine Example of Clustering Running K-means with Scikit-Learn Introduction to Deep Learning using TensorFlow Deep Learning Compared to Other Machine Learning Approaches Applications of Deep Learning How to run the Neural Network using TensorFlow Cases of Study with Real Data Sources & References Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: If you want to smash Machine Learning from scratch, this book is for you. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Does this book include everything I need to become a Machine Learning expert? A: Unfortunately, no. This book is designed for readers taking their first steps in Machine Learning and further learning will be required beyond this book to master all aspects of Machine Learning. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected] If you need to see the quality of our job, AI Sciences Company offering you a free eBook in Machine Learning with Python written by the data scientist Alain Kaufmann at http: //aisciences.net/free-books/
Category: