Python For Graph And Network Analysis

Download Python For Graph And Network Analysis ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to Python For Graph And Network Analysis book pdf for free now.

Python For Graph And Network Analysis

Author : Mohammed Zuhair Al-Taie
ISBN : 9783319530048
Genre : Computers
File Size : 80.37 MB
Format : PDF, ePub, Mobi
Download : 948
Read : 906

This research monograph provides the means to learn the theory and practice of graph and network analysis using the Python programming language. The social network analysis techniques, included, will help readers to efficiently analyze social data from Twitter, Facebook, LiveJournal, GitHub and many others at three levels of depth: ego, group, and community. They will be able to analyse militant and revolutionary networks and candidate networks during elections. For instance, they will learn how the Ebola virus spread through communities. Practically, the book is suitable for courses on social network analysis in all disciplines that use social methodology. In the study of social networks, social network analysis makes an interesting interdisciplinary research area, where computer scientists and sociologists bring their competence to a level that will enable them to meet the challenges of this fast-developing field. Computer scientists have the knowledge to parse and process data while sociologists have the experience that is required for efficient data editing and interpretation. Social network analysis has successfully been applied in different fields such as health, cyber security, business, animal social networks, information retrieval, and communications.
Category: Computers

Practical Social Network Analysis With Python

Author : Krishna Raj P.M.
ISBN : 9783319967462
Genre : Computers
File Size : 85.38 MB
Format : PDF, ePub, Mobi
Download : 135
Read : 1167

This book focuses on social network analysis from a computational perspective, introducing readers to the fundamental aspects of network theory by discussing the various metrics used to measure the social network. It covers different forms of graphs and their analysis using techniques like filtering, clustering and rule mining, as well as important theories like small world phenomenon. It also presents methods for identifying influential nodes in the network and information dissemination models. Further, it uses examples to explain the tools for visualising large-scale networks, and explores emerging topics like big data and deep learning in the context of social network analysis. With the Internet becoming part of our everyday lives, social networking tools are used as the primary means of communication. And as the volume and speed of such data is increasing rapidly, there is a need to apply computational techniques to interpret and understand it. Moreover, relationships in molecular structures, co-authors in scientific journals, and developers in a software community can also be understood better by visualising them as networks. This book brings together the theory and practice of social network analysis and includes mathematical concepts, computational techniques and examples from the real world to offer readers an overview of this domain.
Category: Computers

Complex Network Analysis In Python

Author : Dmitry Zinoviev
ISBN : 9781680505405
Genre : Computers
File Size : 65.74 MB
Format : PDF
Download : 932
Read : 1292

Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.
Category: Computers

Social Network Analysis For Startups

Author : Maksim Tsvetovat
ISBN : 9781449317621
Genre :
File Size : 21.2 MB
Format : PDF, ePub, Mobi
Download : 557
Read : 657

Does your startup rely on social network analysis? This concise guide provides a statistical framework to help you identify social processes hidden among the tons of data now available. Social network analysis (SNA) is a discipline that predates Facebook and Twitter by 30 years. Through expert SNA researchers, you'll learn concepts and techniques for recognizing patterns in social media, political groups, companies, cultural trends, and interpersonal networks. You'll also learn how to use Python and other open source tools—such as NetworkX, NumPy, and Matplotlib—to gather, analyze, and visualize social data. This book is the perfect marriage between social network theory and practice, and a valuable source of insight and ideas. Discover how internal social networks affect a company’s ability to perform Follow terrorists and revolutionaries through the 1998 Khobar Towers bombing, the 9/11 attacks, and the Egyptian uprising Learn how a single special-interest group can control the outcome of a national election Examine relationships between companies through investment networks and shared boards of directors Delve into the anatomy of cultural fads and trends—offline phenomena often mediated by Twitter and Facebook

Grundzuge Der Mengenlehre

Author : Felix Hausdorff
ISBN : 082840061X
Genre : Mathematics
File Size : 20.43 MB
Format : PDF, Kindle
Download : 608
Read : 824

This reprint of the original 1914 edition of this famous work contains many topics that had to be omitted from later editions, notably, Symmetric Sets, Principle of Duality, most of the ``Algebra'' of Sets, Partially Ordered Sets, Arbitrary Sets of Complexes, Normal Types, Initial and Final Ordering, Complexes of Real Numbers, General Topological Spaces, Euclidean Spaces, the Special Methods Applicable in the Euclidean Plane, Jordan's Separation Theorem, the Theory of Content and Measure, the Theory of the Lebesgue Integral. The text is in German.
Category: Mathematics

Exploring Network Structure Dynamics And Function Using Networkx

Author :
ISBN : OCLC:727277673
Genre :
File Size : 84.21 MB
Format : PDF, Docs
Download : 940
Read : 1010

NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distribution and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.

Learning Social Media Analytics With R

Author : Raghav Bali
ISBN : 9781787125469
Genre : Computers
File Size : 87.84 MB
Format : PDF, Mobi
Download : 442
Read : 387

Tap into the realm of social media and unleash the power of analytics for data-driven insights using R About This Book A practical guide written to help leverage the power of the R eco-system to extract, process, analyze, visualize and model social media data Learn about data access, retrieval, cleaning, and curation methods for data originating from various social media platforms. Visualize and analyze data from social media platforms to understand and model complex relationships using various concepts and techniques such as Sentiment Analysis, Topic Modeling, Text Summarization, Recommendation Systems, Social Network Analysis, Classification, and Clustering. Who This Book Is For It is targeted at IT professionals, Data Scientists, Analysts, Developers, Machine Learning Enthusiasts, social media marketers and anyone with a keen interest in data, analytics, and generating insights from social data. Some background experience in R would be helpful, but not necessary, since this book is written keeping in mind, that readers can have varying levels of expertise. What You Will Learn Learn how to tap into data from diverse social media platforms using the R ecosystem Use social media data to formulate and solve real-world problems Analyze user social networks and communities using concepts from graph theory and network analysis Learn to detect opinion and sentiment, extract themes, topics, and trends from unstructured noisy text data from diverse social media channels Understand the art of representing actionable insights with effective visualizations Analyze data from major social media channels such as Twitter, Facebook, Flickr, Foursquare, Github, StackExchange, and so on Learn to leverage popular R packages such as ggplot2, topicmodels, caret, e1071, tm, wordcloud, twittR, Rfacebook, dplyr, reshape2, and many more In Detail The Internet has truly become humongous, especially with the rise of various forms of social media in the last decade, which give users a platform to express themselves and also communicate and collaborate with each other. This book will help the reader to understand the current social media landscape and to learn how analytics can be leveraged to derive insights from it. This data can be analyzed to gain valuable insights into the behavior and engagement of users, organizations, businesses, and brands. It will help readers frame business problems and solve them using social data. The book will also cover several practical real-world use cases on social media using R and its advanced packages to utilize data science methodologies such as sentiment analysis, topic modeling, text summarization, recommendation systems, social network analysis, classification, and clustering. This will enable readers to learn different hands-on approaches to obtain data from diverse social media sources such as Twitter and Facebook. It will also show readers how to establish detailed workflows to process, visualize, and analyze data to transform social data into actionable insights. Style and approach This book follows a step-by-step approach with detailed strategies for understanding, extracting, analyzing, visualizing, and modeling data from several major social network platforms such as Facebook, Twitter, Foursquare, Flickr, Github, and StackExchange. The chapters cover several real-world use cases and leverage data science, machine learning, network analysis, and graph theory concepts along with the R ecosystem, including popular packages such as ggplot2, caret,dplyr, topicmodels, tm, and so on.
Category: Computers

Graph Analysis And Visualization

Author : Richard Brath
ISBN : 9781118845875
Genre : Computers
File Size : 82.94 MB
Format : PDF, ePub
Download : 293
Read : 642

Wring more out of the data with a scientific approach toanalysis Graph Analysis and Visualization brings graph theory outof the lab and into the real world. Using sophisticated methods andtools that span analysis functions, this guide shows you how toexploit graph and network analytic techniques to enable thediscovery of new business insights and opportunities. Published infull color, the book describes the process of creating powerfulvisualizations using a rich and engaging set of examples fromsports, finance, marketing, security, social media, and more. Youwill find practical guidance toward pattern identification andusing various data sources, including Big Data, plus clearinstruction on the use of software and programming. The companionwebsite offers data sets, full code examples in Python, and linksto all the tools covered in the book. Science has already reaped the benefit of network and graphtheory, which has powered breakthroughs in physics, economics,genetics, and more. This book brings those proven techniques intothe world of business, finance, strategy, and design, helpingextract more information from data and better communicate theresults to decision-makers. Study graphical examples of networks using clear and insightfulvisualizations Analyze specifically-curated, easy-to-use data sets fromvarious industries Learn the software tools and programming languages that extractinsights from data Code examples using the popular Python programminglanguage There is a tremendous body of scientific work on network andgraph theory, but very little of it directly applies to analystfunctions outside of the core sciences – until now. Writtenfor those seeking empirically based, systematic analysis methodsand powerful tools that apply outside the lab, Graph Analysisand Visualization is a thorough, authoritative resource.
Category: Computers

40 Algorithms Every Programmer Should Know

Author : Imran Ahmad
ISBN : 9781789809862
Genre : Computers
File Size : 43.91 MB
Format : PDF, ePub, Docs
Download : 861
Read : 846

Algorithms play an important role in both the science and practice of computing. To optimally use algorithms, a deeper understanding of their logic and mathematics is essential. Beyond traditional computing, the ability to apply these algorithms to solve real-world problems is a necessary skill, and this is what this book focuses on.
Category: Computers

Python Data Analysis

Author : Armando Fandango
ISBN : 9781787127920
Genre : Computers
File Size : 78.20 MB
Format : PDF, Docs
Download : 584
Read : 619

Learn how to apply powerful data analysis techniques with popular open source Python modules About This Book Find, manipulate, and analyze your data using the Python 3.5 libraries Perform advanced, high-performance linear algebra and mathematical calculations with clean and efficient Python code An easy-to-follow guide with realistic examples that are frequently used in real-world data analysis projects. Who This Book Is For This book is for programmers, scientists, and engineers who have the knowledge of Python and know the basics of data science. It is for those who wish to learn different data analysis methods using Python 3.5 and its libraries. This book contains all the basic ingredients you need to become an expert data analyst. What You Will Learn Install open source Python modules such NumPy, SciPy, Pandas, stasmodels, scikit-learn,theano, keras, and tensorflow on various platforms Prepare and clean your data, and use it for exploratory analysis Manipulate your data with Pandas Retrieve and store your data from RDBMS, NoSQL, and distributed filesystems such as HDFS and HDF5 Visualize your data with open source libraries such as matplotlib, bokeh, and plotly Learn about various machine learning methods such as supervised, unsupervised, probabilistic, and Bayesian Understand signal processing and time series data analysis Get to grips with graph processing and social network analysis In Detail Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries. Style and approach The book takes a very comprehensive approach to enhance your understanding of data analysis. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work. Packed with clear, easy to follow examples, this book will turn you into an ace data analyst in no time.
Category: Computers

Learn Pyspark

Author : Pramod Singh
ISBN : 9781484249611
Genre : Computers
File Size : 51.4 MB
Format : PDF, ePub, Mobi
Download : 415
Read : 379

Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges. You'll start by reviewing PySpark fundamentals, such as Spark’s core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms. You'll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github. What You'll Learn Develop pipelines for streaming data processing using PySpark Build Machine Learning & Deep Learning models using PySpark latest offerings Use graph analytics using PySpark Create Sequence Embeddings from Text data Who This Book is For Data Scientists, machine learning and deep learning engineers who want to learn and use PySpark for real time analysis on streaming data.
Category: Computers

Data Analysis With Python

Author : David Taieb
ISBN : 9781789958195
Genre : Computers
File Size : 20.84 MB
Format : PDF, Mobi
Download : 636
Read : 945

Learn a modern approach to data analysis using Python to harness the power of programming and AI across your data. Detailed case studies bring this modern approach to life across visual data, social media, graph algorithms, and time series analysis. Key Features Bridge your data analysis with the power of programming, complex algorithms, and AI Use Python and its extensive libraries to power your way to new levels of data insight Work with AI algorithms, TensorFlow, graph algorithms, NLP, and financial time series Explore this modern approach across with key industry case studies and hands-on projects Book Description Data Analysis with Python offers a modern approach to data analysis so that you can work with the latest and most powerful Python tools, AI techniques, and open source libraries. Industry expert David Taieb shows you how to bridge data science with the power of programming and algorithms in Python. You'll be working with complex algorithms, and cutting-edge AI in your data analysis. Learn how to analyze data with hands-on examples using Python-based tools and Jupyter Notebook. You'll find the right balance of theory and practice, with extensive code files that you can integrate right into your own data projects. Explore the power of this approach to data analysis by then working with it across key industry case studies. Four fascinating and full projects connect you to the most critical data analysis challenges you’re likely to meet in today. The first of these is an image recognition application with TensorFlow – embracing the importance today of AI in your data analysis. The second industry project analyses social media trends, exploring big data issues and AI approaches to natural language processing. The third case study is a financial portfolio analysis application that engages you with time series analysis - pivotal to many data science applications today. The fourth industry use case dives you into graph algorithms and the power of programming in modern data science. You'll wrap up with a thoughtful look at the future of data science and how it will harness the power of algorithms and artificial intelligence. What you will learn A new toolset that has been carefully crafted to meet for your data analysis challenges Full and detailed case studies of the toolset across several of today’s key industry contexts Become super productive with a new toolset across Python and Jupyter Notebook Look into the future of data science and which directions to develop your skills next Who this book is for This book is for developers wanting to bridge the gap between them and data scientists. Introducing PixieDust from its creator, the book is a great desk companion for the accomplished Data Scientist. Some fluency in data interpretation and visualization is assumed. It will be helpful to have some knowledge of Python, using Python libraries, and some proficiency in web development.
Category: Computers

Analysis Of Images Social Networks And Texts

Author : Wil M. P. van der Aalst
ISBN : 9783030395759
Genre : Computers
File Size : 49.81 MB
Format : PDF, Mobi
Download : 458
Read : 938

This book constitutes the proceedings of the 8th International Conference on Analysis of Images, Social Networks and Texts, AIST 2019, held in Kazan, Russia, in July 2019. The 24 full papers and 10 short papers were carefully reviewed and selected from 134 submissions (of which 21 papers were rejected without being reviewed). The papers are organized in topical sections on general topics of data analysis; natural language processing; social network analysis; analysis of images and video; optimization problems on graphs and network structures; analysis of dynamic behaviour through event data.
Category: Computers

Pyboolnet A Python Package For The Generation Analysis And Visualization Of Boolean Networks

Author :
ISBN : OCLC:1051949087
Genre :
File Size : 30.7 MB
Format : PDF, Mobi
Download : 689
Read : 775

Abstract Motivation: The goal of this project is to provide a simple interface to working with Boolean networks. Emphasis is put on easy access to a large number of common tasks including the generation and manipulation of networks, attractor and basin computation, model checking and trap space computation, execution of established graph algorithms as well as graph drawing and layouts. Results: PyBoolNet is a Python package for working with Boolean networks that supports simple access to model checking via NuSMV, standard graph algorithms via NetworkX and visualization via dot. In addition, state of the art attractor computation exploiting Potassco ASP is implemented. The package is function-based and uses only native Python and NetworkX data types. Availability and Implementation: Contact: [email protected]

Stock Market Prediction And Efficiency Analysis Using Recurrent Neural Network

Author : Joish Bosco
ISBN : 9783668800458
Genre : Computers
File Size : 65.59 MB
Format : PDF, ePub, Docs
Download : 947
Read : 880

Project Report from the year 2018 in the subject Computer Science - Technical Computer Science, , course: Computer Science, language: English, abstract: Modeling and Forecasting of the financial market have been an attractive topic to scholars and researchers from various academic fields. The financial market is an abstract concept where financial commodities such as stocks, bonds, and precious metals transactions happen between buyers and sellers. In the present scenario of the financial market world, especially in the stock market, forecasting the trend or the price of stocks using machine learning techniques and artificial neural networks are the most attractive issue to be investigated. As Giles explained, financial forecasting is an instance of signal processing problem which is difficult because of high noise, small sample size, non-stationary, and non-linearity. The noisy characteristics mean the incomplete information gap between past stock trading price and volume with a future price. The stock market is sensitive with the political and macroeconomic environment. However, these two kinds of information are too complex and unstable to gather. The above information that cannot be included in features are considered as noise. The sample size of financial data is determined by real-world transaction records. On one hand, a larger sample size refers a longer period of transaction records; on the other hand, large sample size increases the uncertainty of financial environment during the 2 sample period. In this project, we use stock data instead of daily data in order to reduce the probability of uncertain noise, and relatively increase the sample size within a certain period of time. By non-stationarity, one means that the distribution of stock data is various during time changing. Non-linearity implies that feature correlation of different individual stocks is various. Efficient Market Hypothesis was developed by Burton G. Malkiel in 1991.
Category: Computers

Think Complexity

Author : Allen Downey
ISBN : 9781449314637
Genre : Computers
File Size : 22.31 MB
Format : PDF, Docs
Download : 975
Read : 531

Enhances Python skills by working with data structures and algorithms and gives examples of complex systems using exercises, case studies, and simple explanations.
Category: Computers

Introduction To Data Science

Author : Laura Igual
ISBN : 9783319500171
Genre : Computers
File Size : 44.90 MB
Format : PDF, Kindle
Download : 692
Read : 508

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.
Category: Computers

Data Science And Complex Networks

Author : Guido Caldarelli
ISBN : 9780199639601
Genre :
File Size : 25.98 MB
Format : PDF, ePub, Mobi
Download : 950
Read : 888

This book provides a comprehensive yet short description of the basic concepts of Complex Network theory. In contrast to other books the authors present these concepts through real case studies. The application topics span from Foodwebs, to the Internet, the World Wide Web and the Social Networks, passing through the International Trade Web and Financial time series. The final part is devoted to definition and implementation of the most important network models. The text provides information on the structure of the data and on the quality of available datasets. Furthermore it provides a series of codes to allow immediate implementation of what is theoretically described in the book. Readers already used to the concepts introduced in this book can learn the art of coding in Python by using the online material. To this purpose the authors have set up a dedicated web site where readers can download and test the codes. The whole project is aimed as a learning tool for scientists and practitioners, enabling them to begin working instantly in the field of Complex Networks.

Graph Algorithms

Author : Mark Needham
ISBN : 9781492047650
Genre : Computers
File Size : 21.33 MB
Format : PDF, Kindle
Download : 409
Read : 1025

Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark
Category: Computers