Proof In Mathematics

Download Proof In Mathematics ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to Proof In Mathematics book pdf for free now.

Logic Sets And The Techniques Of Mathematical Proofs

Author : Brahima Mbodje Ph. D.
ISBN : 9781463429676
Genre : Education
File Size : 69.71 MB
Format : PDF, Mobi
Download : 455
Read : 631

As its title indicates, this book is about logic, sets and mathematical proofs. It is a careful, patient and rigorous introduction for readers with very limited mathematical maturity. It teaches the reader not only how to read a mathematical proof, but also how to write one. To achieve this, we carefully lay out all the various proof methods encountered in mathematical discourse, give their logical justifications, and apply them to the study of topics [such as real numbers, relations, functions, sequences, fine sets, infinite sets, countable sets, uncountable sets and transfinite numbers] whose mastery is important for anyone contemplating advanced studies in mathematics. The book is completely self-contained; since the prerequisites for reading it are only a sound background in high school algebra. Though this book is meant to be a companion specifically for senior high school pupils and college undergraduate students, it will also be of immense value to anyone interested in acquiring the tools and way of thinking of the mathematician.
Category: Education

The Art Of Proof

Author : Matthias Beck
ISBN : 1441970231
Genre : Mathematics
File Size : 39.19 MB
Format : PDF, Docs
Download : 205
Read : 802

The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.
Category: Mathematics

Introduction To Abstract Mathematics

Author : John F. Lucas
ISBN : 091267573X
Genre : Mathematics
File Size : 66.51 MB
Format : PDF, Docs
Download : 846
Read : 219

This is a book about mathematics and mathematical thinking. It is intended for the serious learner who is interested in studying some deductive strategies in the context of a variety of elementary mathematical situations. No background beyond single-variable calculus is presumed.
Category: Mathematics

Concepts Of Proof In Mathematics Philosophy And Computer Science

Author : Dieter Probst
ISBN : 9781501502620
Genre : Philosophy
File Size : 61.17 MB
Format : PDF
Download : 381
Read : 1281

A proof is a successful demonstration that a conclusion necessarily follows by logical reasoning from axioms which are considered evident for the given context and agreed upon by the community. It is this concept that sets mathematics apart from other disciplines and distinguishes it as the prototype of a deductive science. Proofs thus are utterly relevant for research, teaching and communication in mathematics and of particular interest for the philosophy of mathematics. In computer science, moreover, proofs have proved to be a rich source for already certified algorithms. This book provides the reader with a collection of articles covering relevant current research topics circled around the concept 'proof'. It tries to give due consideration to the depth and breadth of the subject by discussing its philosophical and methodological aspects, addressing foundational issues induced by Hilbert's Programme and the benefits of the arising formal notions of proof, without neglecting reasoning in natural language proofs and applications in computer science such as program extraction.
Category: Philosophy

A Transition To Mathematics With Proofs

Author : Michael J Cullinane
ISBN : 9781449627782
Genre : Mathematics
File Size : 70.18 MB
Format : PDF, ePub, Mobi
Download : 184
Read : 783

Developed for the "transition" course for mathematics majors moving beyond the primarily procedural methods of their calculus courses toward a more abstract and conceptual environment found in more advanced courses, A Transition to Mathematics with Proofs emphasizes mathematical rigor and helps students learn how to develop and write mathematical proofs. The author takes great care to develop a text that is accessible and readable for students at all levels. It addresses standard topics such as set theory, number system, logic, relations, functions, and induction in at a pace appropriate for a wide range of readers. Throughout early chapters students gradually become aware of the need for rigor, proof, and precision, and mathematical ideas are motivated through examples.
Category: Mathematics

Mathematical Proofs

Author : Gary Chartrand
ISBN : UCSC:32106019008397
Genre : Mathematics
File Size : 74.71 MB
Format : PDF, Kindle
Download : 802
Read : 764

Mathematical Proofs: A Transition to Advanced Mathematics, 2/e, prepares students for the more abstract mathematics courses that follow calculus. This text introduces students to proof techniques and writing proofs of their own. As such, it is an introduction to the mathematics enterprise, providing solid introductions to relations, functions, and cardinalities of sets. KEY TOPICS: Communicating Mathematics, Sets, Logic, Direct Proof and Proof by Contrapositive, More on Direct Proof and Proof by Contrapositive, Existence and Proof by Contradiction, Mathematical Induction, Prove or Disprove, Equivalence Relations, Functions, Cardinalities of Sets, Proofs in Number Theory, Proofs in Calculus, Proofs in Group Theory. MARKET: For all readers interested in advanced mathematics and logic.
Category: Mathematics

Discrete Mathematics With Proof

Author : Eric Gossett
ISBN : 9780470457931
Genre : Mathematics
File Size : 34.93 MB
Format : PDF, ePub, Docs
Download : 290
Read : 770

A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics.
Category: Mathematics

Cultural Foundations Of Mathematics

Author : C. K. Raju
ISBN : 8131708713
Genre : Calculus
File Size : 63.29 MB
Format : PDF, Kindle
Download : 291
Read : 342

The Volume Examines, In Depth, The Implications Of Indian History And Philosophy For Contemporary Mathematics And Science. The Conclusions Challenge Current Formal Mathematics And Its Basis In The Western Dogma That Deduction Is Infallible (Or That It Is Less Fallible Than Induction). The Development Of The Calculus In India, Over A Thousand Years, Is Exhaustively Documented In This Volume, Along With Novel Insights, And Is Related To The Key Sources Of Wealth-Monsoon-Dependent Agriculture And Navigation Required For Overseas Trade - And The Corresponding Requirement Of Timekeeping. Refecting The Usual Double Standard Of Evidence Used To Construct Eurocentric History, A Single, New Standard Of Evidence For Transmissions Is Proposed. Using This, It Is Pointed Out That Jesuits In Cochin, Following The Toledo Model Of Translation, Had Long-Term Opportunity To Transmit Indian Calculus Texts To Europe. The European Navigational Problem Of Determining Latitude, Longitude, And Loxodromes, And The 1582 Gregorian Calendar-Reform, Provided Ample Motivation. The Mathematics In These Earlier Indian Texts Suddenly Starts Appearing In European Works From The Mid-16Th Century Onwards, Providing Compelling Circumstantial Evidence. While The Calculus In India Had Valid Pramana, This Differed From Western Notions Of Proof, And The Indian (Algorismus) Notion Of Number Differed From The European (Abacus) Notion. Hence, Like Their Earlier Difficulties With The Algorismus, Europeans Had Difficulties In Understanding The Calculus, Which, Like Computer Technology, Enhanced The Ability To Calculate, Albeit In A Way Regarded As Epistemologically Insecure. Present-Day Difficulties In Learning Mathematics Are Related, Via Phylogeny Is Ontogeny , To These Historical Difficulties In Assimilating Imported Mathematics. An Appendix Takes Up Further Contemporary Implications Of The New Philosophy Of Mathematics For The Extension Of The Calculus, Which Is Needed To Handle The Infinities Arising In The Study Of Shock Waves And The Renormalization Problem Of Quantum Field Theory.
Category: Calculus

Proofs And Refutations

Author : Imre Lakatos
ISBN : 9781316425336
Genre : Science
File Size : 73.2 MB
Format : PDF
Download : 440
Read : 807

Imre Lakatos's Proofs and Refutations is an enduring classic, which has never lost its relevance. Taking the form of a dialogue between a teacher and some students, the book considers various solutions to mathematical problems and, in the process, raises important questions about the nature of mathematical discovery and methodology. Lakatos shows that mathematics grows through a process of improvement by attempts at proofs and critiques of these attempts, and his work continues to inspire mathematicians and philosophers aspiring to develop a philosophy of mathematics that accounts for both the static and the dynamic complexity of mathematical practice. With a specially commissioned Preface written by Paolo Mancosu, this book has been revived for a new generation of readers.
Category: Science

Proof And The Art Of Mathematics

Author : Joel David Hamkins
ISBN : 9780262542203
Genre :
File Size : 56.52 MB
Format : PDF, ePub
Download : 890
Read : 828

How to write mathematical proofs, shown in fully-worked out examples. This is a companion volume Joel Hamkins's Proof and the Art of Mathematics, providing fully worked-out solutions to all of the odd-numbered exercises as well as a few of the even-numbered exercises. In many cases, the solutions go beyond the exercise question itself to the natural extensions of the ideas, helping readers learn how to approach a mathematical investigation. As Hamkins asks, "Once you have solved a problem, why not push the ideas harder to see what further you can prove with them?" These solutions offer readers examples of how to write a mathematical proofs. The mathematical development of this text follows the main book, with the same chapter topics in the same order, and all theorem and exercise numbers in this text refer to the corresponding statements of the main text.

Bridge To Abstract Mathematics

Author : Ronald P. Morash
ISBN : PSU:000030526686
Genre : Mathematics
File Size : 37.22 MB
Format : PDF, Docs
Download : 856
Read : 721

This text is designed for students who are preparing to take a post-calculus abstract algebra and analysis course. Morash concentrates on providing students with the basic tools (sets, logic and proof techniques) needed for advanced study in mathematics. The first six chapters of the text are devoted to these basics, and these topics are reinforced throughout the remainder of the text. Morash guides students through the transition from a calculus-level courses upper-level courses that have significant abstract mathematical content.
Category: Mathematics

Exploring Mathematics

Author : John Meier
ISBN : 9781107128989
Genre : Mathematics
File Size : 67.15 MB
Format : PDF, Kindle
Download : 592
Read : 1138

Exploring Mathematics gives students experience with doing mathematics - interrogating mathematical claims, exploring definitions, forming conjectures, attempting proofs, and presenting results - and engages them with examples, exercises, and projects that pique their interest. Written with a minimal number of pre-requisites, this text can be used by college students in their first and second years of study, and by independent readers who want an accessible introduction to theoretical mathematics. Core topics include proof techniques, sets, functions, relations, and cardinality, with selected additional topics that provide many possibilities for further exploration. With a problem-based approach to investigating the material, students develop interesting examples and theorems through numerous exercises and projects. In-text exercises, with complete solutions or robust hints included in an appendix, help students explore and master the topics being presented. The end-of-chapter exercises and projects provide students with opportunities to confirm their understanding of core material, learn new concepts, and develop mathematical creativity.
Category: Mathematics

Introduction To Mathematical Structures And Proofs

Author : Larry J. Gerstein
ISBN : 9781461442653
Genre : Mathematics
File Size : 70.68 MB
Format : PDF, Docs
Download : 673
Read : 215

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on for instructors adopting the text for a course.
Category: Mathematics

A Logical Introduction To Proof

Author : Daniel W. Cunningham
ISBN : 9781461436317
Genre : Mathematics
File Size : 65.94 MB
Format : PDF, Kindle
Download : 128
Read : 291

The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.
Category: Mathematics

Why Is There Philosophy Of Mathematics At All

Author : Ian Hacking
ISBN : 9781107729827
Genre : Science
File Size : 76.98 MB
Format : PDF, Docs
Download : 494
Read : 836

This truly philosophical book takes us back to fundamentals - the sheer experience of proof, and the enigmatic relation of mathematics to nature. It asks unexpected questions, such as 'what makes mathematics mathematics?', 'where did proof come from and how did it evolve?', and 'how did the distinction between pure and applied mathematics come into being?' In a wide-ranging discussion that is both immersed in the past and unusually attuned to the competing philosophical ideas of contemporary mathematicians, it shows that proof and other forms of mathematical exploration continue to be living, evolving practices - responsive to new technologies, yet embedded in permanent (and astonishing) facts about human beings. It distinguishes several distinct types of application of mathematics, and shows how each leads to a different philosophical conundrum. Here is a remarkable body of new philosophical thinking about proofs, applications, and other mathematical activities.
Category: Science

How To Prove It

Author : Daniel J. Velleman
ISBN : 9781139450973
Genre : Mathematics
File Size : 22.68 MB
Format : PDF
Download : 781
Read : 412

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Category: Mathematics

Explanation And Proof In Mathematics

Author : Gila Hanna
ISBN : 1441905766
Genre : Education
File Size : 82.42 MB
Format : PDF
Download : 576
Read : 947

In the four decades since Imre Lakatos declared mathematics a "quasi-empirical science," increasing attention has been paid to the process of proof and argumentation in the field -- a development paralleled by the rise of computer technology and the mounting interest in the logical underpinnings of mathematics. Explanantion and Proof in Mathematics assembles perspectives from mathematics education and from the philosophy and history of mathematics to strengthen mutual awareness and share recent findings and advances in their interrelated fields. With examples ranging from the geometrists of the 17th century and ancient Chinese algorithms to cognitive psychology and current educational practice, contributors explore the role of refutation in generating proofs, the varied links between experiment and deduction, the use of diagrammatic thinking in addition to pure logic, and the uses of proof in mathematics education (including a critique of "authoritative" versus "authoritarian" teaching styles). A sampling of the coverage: The conjoint origins of proof and theoretical physics in ancient Greece. Proof as bearers of mathematical knowledge. Bridging knowing and proving in mathematical reasoning. The role of mathematics in long-term cognitive development of reasoning. Proof as experiment in the work of Wittgenstein. Relationships between mathematical proof, problem-solving, and explanation. Explanation and Proof in Mathematics is certain to attract a wide range of readers, including mathematicians, mathematics education professionals, researchers, students, and philosophers and historians of mathematics.
Category: Education

The Moment Of Proof

Author : Donald C. Benson
ISBN : 0195139194
Genre : Mathematics
File Size : 61.91 MB
Format : PDF, Mobi
Download : 312
Read : 305

A brilliant introduction to the pleasures of mathematical thinking, this book attempts to convey to general readers the feeling of eureka--the joy of discovery--that mathematicians feel when they first encounter an elegant truth. 92 line illustrations.
Category: Mathematics

Mathematical Thinking

Author : John P. D'Angelo
ISBN : 0130144126
Genre : Mathematics
File Size : 85.88 MB
Format : PDF, ePub, Docs
Download : 519
Read : 1175

This survey of both discrete and continuous mathematics focuses on the logical thinking skills necessary to understand and communicate fundamental ideas and proofs in mathematics, rather than on rote symbolic manipulation. Coverage begins with the fundamentals of mathematical language and proof techniques (such as induction); then applies them to easily-understood questions in elementary number theory and counting; then develops additional techniques of proofs via fundamental topics in discrete and continuous mathematics. Topics are addressed in the context of familiar objects; easily-understood, engaging examples; and over 700 stimulating exercises and problems, ranging from simple applications to subtle problems requiring ingenuity. ELEMENTARY CONCEPTS. Numbers, Sets and Functions. Language and Proofs. Properties of Functions. Induction. PROPERTIES OF NUMBERS. Counting and Cardinality. Divisibility. Modular Arithmetic. The Rational Numbers. DISCRETE MATHEMATICS. Combinatorial Reasoning. Two Principles of Counting. Graph Theory. Recurrence Relations. CONTINUOUS MATHEMATICS. The Real Numbers. Sequences and Series. Continuity. Differentiation. Integration. The Complex Numbers. For anyone interested in learning how to understand and write mathematical proofs, or a reference for college professors and high school teachers of mathematics.
Category: Mathematics

Transition To Higher Mathematics

Author : Bob A. Dumas
ISBN : 0071106472
Genre : Logic, Symbolic and mathematical
File Size : 46.65 MB
Format : PDF, ePub
Download : 315
Read : 348

The authors teach how to organize and structure mathematical thoughts, how to read and manipulate abstract definitions, and how to prove or refute proofs by effectively evaluating them. There is a large array of topics and many exercises.
Category: Logic, Symbolic and mathematical