Download Probability Models ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to Probability Models book pdf for free now.

Author : Sheldon M. Ross
ISBN : 9780125980623
Genre : Mathematics
File Size : 21.44 MB
Format : PDF, Docs
Download : 328
Read : 1076

Rosss classic bestseller has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries.

Author : John Haigh
ISBN : 9781447101697
Genre : Mathematics
File Size : 53.64 MB
Format : PDF, ePub, Mobi
Download : 718
Read : 465

Probability Models is designed to aid students studying probability as part of an undergraduate course on mathematics or mathematics and statistics. It describes how to set up and analyse models of real-life phenomena that involve elements of chance. Motivation comes from everyday experiences of probability via dice and cards, the idea of fairness in games of chance, and the random ways in which, say, birthdays are shared or particular events arise. Applications include branching processes, random walks, Markov chains, queues, renewal theory, and Brownian motion. No specific knowledge of the subject is assumed, only a familiarity with the notions of calculus, and the summation of series. Where the full story would call for a deeper mathematical background, the difficulties are noted and appropriate references given. The main topics arise naturally, with definitions and theorems supported by fully worked examples and some 200 set exercises, all with solutions.

Written by renowned experts in the field, this reissue of a textbook has as its unifying theme the role that probability models have had, and continue to have, in scientific and practical applications. It includes many examples, with actual data, of real-world use of probability models, while expositing the mathematical theory of probability at an introductory calculus-based level. Detailed descriptions of the properties and applications of probability models that have successfully modeled real phenomena are given, as well as an explanation of methods for testing goodness of fit of these models. Readers will receive a firm foundation in techniques for deriving distributions of various summaries of data that will prepare them for subsequent studies of statistics, as well as a solid grounding in concepts such as that of conditional probability that will prepare them for more advanced courses in stochastic processes.

Author : Roger B. Myerson
ISBN : 0534423817
Genre : Mathematics
File Size : 76.54 MB
Format : PDF, ePub
Download : 874
Read : 1183

Learn to use probability in complex realistic situations with PROBABILITY MODELS FOR ECONOMIC DECISIONS. This introduction to the use of probability models for analyzing risks and economic decisions uses Microsoft Excel spreadsheets for the analytic work. As a result of the emphasis on spreadsheet modeling, you'll also develop sophisticated spreadsheet skills.

Author : Tim Futing Liao
ISBN : 0803949995
Genre : Social Science
File Size : 26.37 MB
Format : PDF
Download : 693
Read : 1265

What is the probability that something will occur, and how is that probability altered by a change in an independent variable? To answer these questions, Tim Futing Liao introduces a systematic way of interpreting commonly used probability models. Since much of what social scientists study is measured in noncontinuous ways and, therefore, cannot be analyzed using a classical regression model, it becomes necessary to model the likelihood that an event will occur. This book explores these models first by reviewing each probability model and then by presenting a systematic way for interpreting the results from each.

Author : Do Le Minh
ISBN : UOM:39015050037657
Genre : Mathematics
File Size : 40.63 MB
Format : PDF
Download : 747
Read : 1150

Intended for a course in Probability Models at the undergraduate or graduate level, this book is designed for those who will actually use probability and is designed to fit diverse audiences (business students, applied engineering students, and biology students). The course focuses on applications of probability through the presentation of models rather than theory alone. In this practical and interesting book, author Do Le (Paul) Minh provides accessible coverage for a course in probability models. Minh motivates the material with interesting application problems relating to medicine, business, and engineering, many of which are based on real studies and applications. Throughout the book, he thoughtfully integrates the use of computers and spreadsheets to solve problems.

Author : Carlos Narciso Bouza Herrera
ISBN : 153616996X
Genre : Probabilities
File Size : 36.59 MB
Format : PDF, Kindle
Download : 300
Read : 207

"This book intends to highlight how the Theory of Probability supports, not only statistical modeling but how it allows describing different real life phenomena. It gives clues for understanding the philosophic roots of probability and how they are present in different areas of knowledge. The readers may use the book as a source for understanding the philosophical development of probability concepts and of the intents to obtain mathematical models. The chapters deal with the understanding of how probability models are usable for determining: A Probabilistic model of the best flight value for the design on paper of a helicopter How to model the improvement of the behavior of water heating systems and of the reliability of systems Models for determining the probability of non responses in inquiries and to evaluate the missing data. The modeling of various problems related with the behavior of ordering models of use in decision rules and of general properties of Order Statistics. A unified study of the probabilistic aspects of two Metaheuristics: Simulated Annealing and Tabu Search. How to obtain the identification of econometric techniques for dealing efficiently with the study of economic growth models under endogeneity. This book will be of interest for biometricians, statisticians, economists, engineers dealing with control and reliability, as well for informaticians"--

Author : Roger B. Myerson
ISBN : 9780262355605
Genre : Business & Economics
File Size : 40.17 MB
Format : PDF, ePub
Download : 293
Read : 193

An introduction to the use of probability models for analyzing risk and economic decisions, using spreadsheets to represent and simulate uncertainty. This textbook offers an introduction to the use of probability models for analyzing risks and economic decisions. It takes a learn-by-doing approach, teaching the student to use spreadsheets to represent and simulate uncertainty and to analyze the effect of such uncertainty on an economic decision. Students in applied business and economics can more easily grasp difficult analytical methods with Excel spreadsheets. The book covers the basic ideas of probability, how to simulate random variables, and how to compute conditional probabilities via Monte Carlo simulation. The first four chapters use a large collection of probability distributions to simulate a range of problems involving worker efficiency, market entry, oil exploration, repeated investment, and subjective belief elicitation. The book then covers correlation and multivariate normal random variables; conditional expectation; optimization of decision variables, with discussions of the strategic value of information, decision trees, game theory, and adverse selection; risk sharing and finance; dynamic models of growth; dynamic models of arrivals; and model risk. New material in this second edition includes two new chapters on additional dynamic models and model risk; new sections in every chapter; many new end-of-chapter exercises; and coverage of such topics as simulation model workflow, models of probabilistic electoral forecasting, and real options. The book comes equipped with Simtools, an open-source, free software used througout the book, which allows students to conduct Monte Carlo simulations seamlessly in Excel.

Author : Sheldon M. Ross
ISBN : 0125980566
Genre : Probabilities
File Size : 81.86 MB
Format : PDF, ePub
Download : 675
Read : 596

Introduction to Probability Models, 8th Edition, continues to introduce and inspire readers to the art of applying probability theory to phenomena in fields such as engineering, computer science, management and actuarial science, the physical and social sciences, and operations research. Now revised and updated, this best-selling book retains its hallmark intuitive, lively writing style, captivating introduction to applications from diverse disciplines, and plentiful exercises and worked-out examples. The 8th Edition includes five new sections and numerous new examples and exercises, many of which focus on strategies applicable in risk industries such as insurance or actuarial work. The five new sections include: * Section 3.6.4 presents an elementary approach, using only conditional expectation, for computing the expected time until a sequence of independent and identically distributed random variables produce a specified pattern. * Section 3.6.5 derives an identity involving compound Poisson random variables and then uses it to obtain an elegant recursive formula for the probabilities of compound Poisson random variables whose incremental increases are nonnegative and integer valued * Section 5.4.3 is concerned with a conditional Poisson process, a type of process that is widely applicable in the risk industries * Section 7.10 presents a derivation of and a new characterization for the classical insurance ruin probability. * Section 11.8 presents a simulation procedure known as coupling from the past; its use enables one to exactly generate the value of a random variable whose distribution is that of the stationary distribution of a given Markov chain, evenin cases where the stationary distribution cannot itself be explicitly determined. Other Academic Press books by Sheldon Ross: Simulation 3rd Ed., ISBN: 0-12-598053-1 Probability Models for Computer Science, ISBN 0-12-598051-5 Introduction to Probability and Statistics for Engineers and Scientists, 2nd Ed., ISBN: 0-12-598472-3 * Classic text by best-selling author * Continues the tradition of expository excellence * Contains compulsory material for Exam 3 of the Society of Actuaries

Author : Richard Durrett
ISBN : 0387781692
Genre : Mathematics
File Size : 73.46 MB
Format : PDF, ePub, Docs
Download : 648
Read : 670

"What underlying forces are responsible for the observed patterns of variability, given a collection of DNA sequences?" In approaching this question a number of probability models are introduced and anyalyzed.Throughout the book, the theory is developed in close connection with data from more than 60 experimental studies that illustrate the use of these results.

Bayesian methods in reliability cannot be fully utilized and understood without full comprehension of the essential differences that exist between frequentist probability and subjective probability. Switching from the frequentist to the subjective approach requires that some fundamental concepts be rethought and suitably redefined. Subjective Probability Models for Lifetimes details those differences and clarifies aspects of subjective probability that have a direct influence on modeling and drawing inference from failure and survival data. In particular, within a framework of Bayesian theory, the author considers the effects of different levels of information in the analysis of the phenomena of positive and negative aging. The author coherently reviews and compares the various definitions and results concerning stochastic ordering, statistical dependence, reliability, and decision theory. He offers a detailed but accessible mathematical treatment of different aspects of probability distributions for exchangeable vectors of lifetimes that imparts a clear understanding of what the "probabilistic description of aging" really is, and why it is important to analyzing survival and failure data.

Author : Michael A. Fligner
ISBN : 9781461227380
Genre : Mathematics
File Size : 65.65 MB
Format : PDF
Download : 973
Read : 801

In June of 1990, a conference was held on Probablity Models and Statisti cal Analyses for Ranking Data, under the joint auspices of the American Mathematical Society, the Institute for Mathematical Statistics, and the Society of Industrial and Applied Mathematicians. The conference took place at the University of Massachusetts, Amherst, and was attended by 36 participants, including statisticians, mathematicians, psychologists and sociologists from the United States, Canada, Israel, Italy, and The Nether lands. There were 18 presentations on a wide variety of topics involving ranking data. This volume is a collection of 14 of these presentations, as well as 5 miscellaneous papers that were contributed by conference participants. We would like to thank Carole Kohanski, summer program coordinator for the American Mathematical Society, for her assistance in arranging the conference; M. Steigerwald for preparing the manuscripts for publication; Martin Gilchrist at Springer-Verlag for editorial advice; and Persi Diaconis for contributing the Foreword. Special thanks go to the anonymous referees for their careful readings and constructive comments. Finally, we thank the National Science Foundation for their sponsorship of the AMS-IMS-SIAM Joint Summer Programs. Contents Preface vii Conference Participants xiii Foreword xvii 1 Ranking Models with Item Covariates 1 D. E. Critchlow and M. A. Fligner 1. 1 Introduction. . . . . . . . . . . . . . . 1 1. 2 Basic Ranking Models and Their Parameters 2 1. 3 Ranking Models with Covariates 8 1. 4 Estimation 9 1. 5 Example. 11 1. 6 Discussion. 14 1. 7 Appendix . 15 1. 8 References.

Author : Sheldon M. Ross
ISBN : 9780080920177
Genre : Mathematics
File Size : 66.59 MB
Format : PDF, ePub, Docs
Download : 103
Read : 813

Ross's classic bestseller, Introduction to Probability Models, has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. It provides an introduction to elementary probability theory and stochastic processes, and shows how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries. A new section (3.7) on COMPOUND RANDOM VARIABLES, that can be used to establish a recursive formula for computing probability mass functions for a variety of common compounding distributions. A new section (4.11) on HIDDDEN MARKOV CHAINS, including the forward and backward approaches for computing the joint probability mass function of the signals, as well as the Viterbi algorithm for determining the most likely sequence of states. Simplified Approach for Analyzing Nonhomogeneous Poisson processes Additional results on queues relating to the (a) conditional distribution of the number found by an M/M/1 arrival who spends a time t in the system; (b) inspection paradox for M/M/1 queues (c) M/G/1 queue with server breakdown Many new examples and exercises.

Understanding the effect of disorder on critical phenomena is a central issue in statistical mechanics. In probabilistic terms: what happens if we perturb a system exhibiting a phase transition by introducing a random environment? The physics community has approached this very broad question by aiming at general criteria that tell whether or not the addition of disorder changes the critical properties of a model: some of the predictions are truly striking and mathematically challenging. We approach this domain of ideas by focusing on a specific class of models, the "pinning models," for which a series of recent mathematical works has essentially put all the main predictions of the physics community on firm footing; in some cases, mathematicians have even gone beyond, settling a number of controversial issues. But the purpose of these notes, beyond treating the pinning models in full detail, is also to convey the gist, or at least the flavor, of the "overall picture," which is, in many respects, unfamiliar territory for mathematicians.

Author : C. Richard Cassady
ISBN : 9781420054903
Genre : Technology & Engineering
File Size : 82.73 MB
Format : PDF, Mobi
Download : 449
Read : 319

Industrial engineering has expanded from its origins in manufacturing to transportation, health care, logistics, services, and more. A common denominator among all these industries, and one of the biggest challenges facing decision-makers, is the unpredictability of systems. Probability Models in Operations Research provides a comprehensive overview of the probabilistic and stochastic modeling approaches commonly used to capture the randomness in industrial and systems engineering.

Author : Haym Benaroya
ISBN : 0824723155
Genre : Science
File Size : 51.79 MB
Format : PDF
Download : 600
Read : 810

Certainty exists only in idealized models. Viewed as the quantification of uncertainties, probabilitry and random processes play a significant role in modern engineering, particularly in areas such as structural dynamics. Unlike this book, however, few texts develop applied probability in the practical manner appropriate for engineers. Probability Models in Engineering and Science provides a comprehensive, self-contained introduction to applied probabilistic modeling. The first four chapters present basic concepts in probability and random variables, and while doing so, develop methods for static problems. The remaining chapters address dynamic problems, where time is a critical parameter in the randomness. Highlights of the presentation include numerous examples and illustrations and an engaging, human connection to the subject, achieved through short biographies of some of the key people in the field. End-of-chapter problems help solidify understanding and footnotes to the literature expand the discussions and introduce relevant journals and texts. This book builds the background today's engineers need to deal explicitly with the scatter observed in experimental data and with intricate dynamic behavior. Designed for undergraduate and graduate coursework as well as self-study, the text's coverage of theory, approximation methods, and numerical methods make it equally valuable to practitioners.

Author : N. Balakrishnan
ISBN : 9781118548714
Genre : Mathematics
File Size : 28.94 MB
Format : PDF, ePub
Download : 319
Read : 719

An essential guide to the concepts of probability theory that puts the focus on models and applications Introduction to Probability offers an authoritative text that presents the main ideas and concepts, as well as the theoretical background, models, and applications of probability. The authors—noted experts in the field—include a review of problems where probabilistic models naturally arise, and discuss the methodology to tackle these problems. A wide-range of topics are covered that include the concepts of probability and conditional probability, univariate discrete distributions, univariate continuous distributions, along with a detailed presentation of the most important probability distributions used in practice, with their main properties and applications. Designed as a useful guide, the text contains theory of probability, de finitions, charts, examples with solutions, illustrations, self-assessment exercises, computational exercises, problems and a glossary. This important text: • Includes classroom-tested problems and solutions to probability exercises • Highlights real-world exercises designed to make clear the concepts presented • Uses Mathematica software to illustrate the text’s computer exercises • Features applications representing worldwide situations and processes • Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress. Written for students majoring in statistics, engineering, operations research, computer science, physics, and mathematics, Introduction to Probability: Models and Applications is an accessible text that explores the basic concepts of probability and includes detailed information on models and applications.

Author : Rick Durrett
ISBN : 9781475762853
Genre : Mathematics
File Size : 81.13 MB
Format : PDF, ePub, Mobi
Download : 611
Read : 241

"What underlying forces are responsible for the observed patterns of variability, given a collection of DNA sequences?" In approaching this question a number of probability models are introduced and anyalyzed.Throughout the book, the theory is developed in close connection with data from more than 60 experimental studies that illustrate the use of these results.