Download Physics Of Collisionless Shocks ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to Physics Of Collisionless Shocks book pdf for free now.

Author : André Balogh
ISBN : 9781461460992
Genre : Science
File Size : 35.26 MB
Format : PDF, Kindle
Download : 669
Read : 1050

The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats subcritical shocks which dissipate flow energy by generating anomalous resistance or viscosity. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecting particles back upstream and generating high electromagnetic wave intensities. Particle acceleration and turbulence at such shocks become possible and important. Part II treats planetary bow shocks and the famous Heliospheric Termination shock as examples of two applications of the theory developed in part I.

Author : Gang Li
ISBN : UOM:39015061009059
Genre : Science
File Size : 41.38 MB
Format : PDF, Docs
Download : 962
Read : 208

Features proceedings of the 4th IGPP Astrophysics Conference, discussing various aspects of collisionless shock physics in solar system plasmas. This volume can serve both as a summary of the understanding of collisionless shock physics, and as a starting point for future research, especially for young scientists in this field.

Abstract: Collisionless shocks occur in various fields of physics. In the context of space and astrophysics they have been investigated for many decades. However, a thorough understanding of shock formation and particle acceleration is still missing. Collisionless shocks can be distinguished into electromagnetic and electrostatic shocks. Electromagnetic shocks are of importance mainly in astrophysical environments and they are mediated by the Weibel or filamentation instability. In such shocks, charged particles gain energy by diffusive shock acceleration. Electrostatic shocks are characterized by a strong electrostatic field, which leads to electron trapping. Ions are accelerated by reflection from the electrostatic potential. Shock formation and particle acceleration will be discussed in theory and simulations.

Author : Baumjohann Wolfgang
ISBN : 9781911298687
Genre : Science
File Size : 61.32 MB
Format : PDF, ePub
Download : 923
Read : 882

This textbook begins with a description of the Earth's plasma environment, followed by the derivation of single particle motions in electromagnetic fields, with applications to the Earth's magnetosphere. Also discussed are the origin and effects of collisions and conductivities, formation of the ionosphere, magnetospheric convection and dynamics, and solar wind-magnetosphere coupling.The second half of the book presents a more theoretical foundation of plasma physics, starting with kinetic theory. Introducing moments of distribution function permits the derivation of the fluid equations, followed by an analysis of fluid boundaries, with the Earth's magnetopause and bow shock as examples, and finally, fluid and kinetic theory are applied to derive the relevant wave modes in a plasma.This revised edition seamlessly integrates new sections on magnetopause reconstruction, as well as instability theory and thermal fluctuations based on new developments in space physics. Applications such as the important problems of collisionless reconnection and collisionless shocks are covered, and some problems have also been included at the end of each chapter./a

Author : Xianzhi Ao
ISBN : 073540724X
Genre : Science
File Size : 53.71 MB
Format : PDF
Download : 151
Read : 1220

This conference has addressed the physics of collisionless shock waves in all space and astrophysical plasma environments from both an observational and theoretical perspective. Topics discussed included shock waves in regions ranging from the solar corona, interplanetary space, the heliospheric termination shock, shocks at supernova remnants, and relativistic shocks associated with jets, etc. The conference addressed shock physics, including shock formation, structure, and stability, dissipative processes, observational techniques, modeling and simulation, particle acceleration and turbulence.

Author : C. T. Russell
ISBN : 9781316477823
Genre : Science
File Size : 24.76 MB
Format : PDF, Mobi
Download : 192
Read : 439

This textbook, derived from courses given by three leading researchers, provides advanced undergraduates and graduates with up-to-date coverage of space physics, from the Sun to the interstellar medium. Clear explanations of the underlying physical processes are presented alongside major new discoveries and knowledge gained from space missions, ground-based observations, theory, and modelling to inspire students. Building from the basics to more complex ideas, the book contains enough material for a two-semester course but the authors also provide suggestions for how the material can be tailored to fit a single semester. End-of-chapter problems reinforce concepts and include computer-based exercises specially developed for this textbook package. Free access to the software is available via the book's website and enables students to model the behavior of magnetospheric and solar plasma. An extensive glossary recaps new terms and carefully selected further reading sections encourage students to explore advanced topics of interest.

Author : Hannu Koskinen
ISBN : 3642003192
Genre : Science
File Size : 71.9 MB
Format : PDF, ePub, Docs
Download : 150
Read : 737

This unique , authoritative book introduces and accurately depicts the current state-of-the art in the field of space storms. Professor Koskinen, renowned expert in the field, takes the basic understanding of the system, together with the pyhsics of space plasmas, and produces a treatment of space storms. He combines a solid base describing space physics phenomena with a rigourous theoretical basis. The topics range from the storms in the solar atmosphere through the solar wind, magnetosphere and ionosphere to the production of the storm-related geoelectric field on the ground. The most up-to-date information available ist presented in a clear, analytical and quantitative way. The book is divided into three parts. Part 1 is a phenomenological introduction to space weather from the Sun to the Earth. Part 2 comprehensively presents the fundamental concepts of space plasma physics. It consists of discussions of fundamental concepts of plasma physics, starting from underlying electrodynamics and statistical physics of charged particles and continuing to single particle motion in homogeneous electromagnetic fields, waves in cold plasma approximation, Vlasov theory, magnetohydrodynamics, instabilities in space plasmas, reconnection and dynamo. Part 3 bridges the gap between the fundamental plasma physics and research level physics of space storms. This part discusses radiation and scattering processes, transport and diffiusion, shocks and shock acceleration, storms on the Sun, in the magnetosphere, the coupling to the atmosphere and ground. The book is concluded wtih a brief review of what is known of space stroms on other planets. One tool for building this briege ist extensive cross-referencing between the various chapters. Exercise problems of varying difficulty are embedded within the main body of the text.

Author : Arnold O. Benz
ISBN : 9780306477195
Genre : Science
File Size : 51.52 MB
Format : PDF, ePub, Mobi
Download : 283
Read : 166

This textbook is intended as an introduction to the physics of solar and stellar coronae, emphasizing kinetic plasma processes. It is addressed to observational astronomers, graduate students, and advanced undergraduates without a ba- ground in plasma physics. Coronal physics is today a vast field with many different aims and goals. So- ing out the really important aspects of an observed phenomenon and using the physics best suited for the case is a formidable problem. There are already several excellent books, oriented toward the interests of astrophysicists, that deal with the magnetohydrodynamics of stellar atmospheres, radiation transport, and radiation theory. In kinetic processes, the different particle velocities play an important role. This is the case when particle collisions can be neglected, for example in very brief phenomena – such as one period of a high-frequency wave – or in effects produced by energetic particles with very long collision times. Some of the most persistent problems of solar physics, like coronal heating, shock waves, flare energy release, and particle acceleration, are likely to be at least partially related to such p- cesses. Study of the Sun is not regarded here as an end in itself, but as the source of information for more general stellar applications. Our understanding of stellar processes relies heavily, in turn, on our understanding of solar processes. Thus an introduction to what is happening in hot, dilute coronae necessarily starts with the plasma physics of our nearest star.

Observations and physical concepts are interwoven to give basic explanations of phenomena and also show the limitations in these explanations and identify some fundamental questions. Compared to conventional plasma physics textbooks this book focuses on the concepts relevant in the large-scale space plasmas. It combines basic concepts with current research and new observations in interplanetary space and in the magnetospheres. Graduate students and young researchers starting to work in this special field of science, will find the numerous references to review articles as well as important original papers helpful to orientate themselves in the literature. Emphasis is on energetic particles and their interaction with the plasma as examples for non-thermal phenomena, shocks and their role in particle acceleration as examples for non-linear phenomena. This second edition has been updated and extended. Improvements include: the use of SI units; addition of recent results from SOHO and Ulysses; improved treatment of the magnetosphere as a dynamic phenomenon; text restructured to provide a closer coupling between basic physical concepts and observed complex phenomena.

Presents the experimental results while explaining the underlying physics on the basis of simple reasoning and agumentation. Assumes only basic knowledge of of fundamental physics and mathematics as usually required for introductory college courses in science or engineering curricula. Derives more specifics of selected topics as each phenomenon considered ,epmasizing an intuitive over a rigorous mathematical approach. Directed at a broad group of readers and students.

Author : Bruce T. Tsurutani
ISBN : 9780875900612
Genre : Science
File Size : 82.3 MB
Format : PDF, ePub, Mobi
Download : 399
Read : 578

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 35. Violent expansions of the solar corona cause transient shock waves which propagate outward from the sun at hundreds to thousands of kilometers per second; simple solar wind velocity gradients at the surface of the sun lead to high-speed streams overtaking slower streams, forming corotating shocks; and steady state supermagnetosonic solar wind flow past objects such as the planets lead to standing bow shocks. However, the solar wind plasma is so hot and tenuous that charged particle Coulomb collisions produce negligible thermalization or dissipation on scale sizes less than 0.1 AU. The irreversible plasma heating by these shocks is accomplished by wave-particle interactions driven by plasma instabilities. Hence these shocks are described as "collisionless."

Author : B. J. Rye
ISBN : 9781461586395
Genre : Science
File Size : 37.50 MB
Format : PDF, ePub, Docs
Download : 814
Read : 429

HE ninth Scottish Universities' Summer School in Physics, sponsored T jointly by the Scottish Universities and NATO was held at Newbattle Abbey from 28th July to 16th August 1968. This was the first Scottish Summer School to be devoted to plasma physics, the exact title for the School being the Physics of Hot Plasmas. Forty-three students were accepted, fourteen of these being resident in the United Kingdom. In addition there were eleven lecturers and seven other participants. The choice of lecturers, particularly in experimental plasma physics, was limited to some extent by the fact that an international conference on con trolled fusion was held at Novosibirsk during the first week in August. Not withstanding this, it was possible to arrange a programme of lectures reasonably well balanced between theoretical and experimental plasma physics. The topics chosen included kinetic theory, waves and oscillations, instabilities, turbulence, collisionless shocks, computational methods, laser scattering and laser generated plasmas, plasma production and containment. Several semi nars on special topics were given by invited speakers and by students.

Author : Baumjohann Wolfgang
ISBN : 9781911298700
Genre : Science
File Size : 53.55 MB
Format : PDF
Download : 835
Read : 999

This book builds on the fluid and kinetic theory of equilibria and waves presented in a companion textbook, Basic Space Plasma Physics (by the same authors), but can also serve as a stand-alone text. It extends the field covered there into the domain of plasma instability and nonlinear theory.The book provides a representative selection of the many possible macro- and microinstabilities in a space plasma, from the Rayleigh-Taylor and Kelvin-Helmholtz to electrostatic and electromagnetic kinetic instabilities. Their quasilinear stabilization and nonlinear evolution and their application to space physics problems are treated. The chapters on nonlinear theory include nonlinear waves, weak turbulence and strong turbulence, all presented from the viewpoint of their relevance to space plasma physics. Special topics include auroral particle acceleration, soliton formation and caviton collapse, anomalous transport, and the theory of collisionless shocks.