Machine Learning Projects For Net Developers

Download Machine Learning Projects For Net Developers ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to Machine Learning Projects For Net Developers book pdf for free now.

Machine Learning Projects For Net Developers

Author : Mathias Brandewinder
ISBN : 9781430267669
Genre : Computers
File Size : 21.92 MB
Format : PDF
Download : 388
Read : 700

Machine Learning Projects for .NET Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You’ll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language ideally suited to machine learning applications in .NET. If you’re new to F#, this book will give you everything you need to get started. If you’re already familiar with F#, this is your chance to put the language into action in an exciting new context. In a series of fascinating projects, you’ll learn how to: Build an optical character recognition (OCR) system from scratch Code a spam filter that learns by example Use F#’s powerful type providers to interface with external resources (in this case, data analysis tools from the R programming language) Transform your data into informative features, and use them to make accurate predictions Find patterns in data when you don’t know what you’re looking for Predict numerical values using regression models Implement an intelligent game that learns how to play from experience Along the way, you’ll learn fundamental ideas that can be applied in all kinds of real-world contexts and industries, from advertising to finance, medicine, and scientific research. While some machine learning algorithms use fairly advanced mathematics, this book focuses on simple but effective approaches. If you enjoy hacking code and data, this book is for you.
Category: Computers

Hands On Machine Learning With Ml Net

Author : Jarred Capellman
ISBN : 9781789804294
Genre : Computers
File Size : 40.91 MB
Format : PDF, Kindle
Download : 151
Read : 476

Create, train, and evaluate various machine learning models such as regression, classification, and clustering using ML.NET, Entity Framework, and ASP.NET Core Key Features Get well-versed with the ML.NET framework and its components and APIs using practical examples Learn how to build, train, and evaluate popular machine learning algorithms with ML.NET offerings Extend your existing machine learning models by integrating with TensorFlow and other libraries Book Description Machine learning (ML) is widely used in many industries such as science, healthcare, and research and its popularity is only growing. In March 2018, Microsoft introduced ML.NET to help .NET enthusiasts in working with ML. With this book, you’ll explore how to build ML.NET applications with the various ML models available using C# code. The book starts by giving you an overview of ML and the types of ML algorithms used, along with covering what ML.NET is and why you need it to build ML apps. You’ll then explore the ML.NET framework, its components, and APIs. The book will serve as a practical guide to helping you build smart apps using the ML.NET library. You’ll gradually become well versed in how to implement ML algorithms such as regression, classification, and clustering with real-world examples and datasets. Each chapter will cover the practical implementation, showing you how to implement ML within .NET applications. You’ll also learn to integrate TensorFlow in ML.NET applications. Later you’ll discover how to store the regression model housing price prediction result to the database and display the real-time predicted results from the database on your web application using ASP.NET Core Blazor and SignalR. By the end of this book, you’ll have learned how to confidently perform basic to advanced-level machine learning tasks in ML.NET. What you will learn Understand the framework, components, and APIs of ML.NET using C# Develop regression models using ML.NET for employee attrition and file classification Evaluate classification models for sentiment prediction of restaurant reviews Work with clustering models for file type classifications Use anomaly detection to find anomalies in both network traffic and login history Work with ASP.NET Core Blazor to create an ML.NET enabled web application Integrate pre-trained TensorFlow and ONNX models in a WPF ML.NET application for image classification and object detection Who this book is for If you are a .NET developer who wants to implement machine learning models using ML.NET, then this book is for you. This book will also be beneficial for data scientists and machine learning developers who are looking for effective tools to implement various machine learning algorithms. A basic understanding of C# or .NET is mandatory to grasp the concepts covered in this book effectively.
Category: Computers

Machine Learning For Decision Makers

Author : Patanjali Kashyap
ISBN : 9781484229880
Genre : Computers
File Size : 86.36 MB
Format : PDF, ePub
Download : 952
Read : 873

Take a deep dive into the concepts of machine learning as they apply to contemporary business and management. You will learn how machine learning techniques are used to solve fundamental and complex problems in society and industry. Machine Learning for Decision Makers serves as an excellent resource for establishing the relationship of machine learning with IoT, big data, and cognitive and cloud computing to give you an overview of how these modern areas of computing relate to each other. This book introduces a collection of the most important concepts of machine learning and sets them in context with other vital technologies that decision makers need to know about. These concepts span the process from envisioning the problem to applying machine-learning techniques to your particular situation. This discussion also provides an insight to help deploy the results to improve decision-making. The book uses case studies and jargon busting to help you grasp the theory of machine learning quickly. You'll soon gain the big picture of machine learning and how it fits with other cutting-edge IT services. This knowledge will give you confidence in your decisions for the future of your business. What You Will Learn Discover the machine learning, big data, and cloud and cognitive computing technology stack Gain insights into machine learning concepts and practices Understand business and enterprise decision-making using machine learning Absorb machine-learning best practices Who This Book Is For Managers tasked with making key decisions who want to learn how and when machine learning and related technologies can help them.
Category: Computers

Deep Learning With C Net And Kelp Net

Author : Matt R. Cole
ISBN : 9789388511018
Genre : Computers
File Size : 64.3 MB
Format : PDF, Docs
Download : 771
Read : 1136

Get hands on with Kelp.Net , Microsoft’s latest Deep Learning framework Key Features Deep Learning Basics The ultimate Kelp.Net reference guide Develop state of the art deep learning applications C# Deep Learning code Develop advanced deep learning models with minimal code Develop your own advanced Deep Learning models Loading and Saving Deep Learning Models Comprehensive Kelp.Net reference Sample Deep Learning Models and Tests OpenCL Reference Easily add deep learning to your applications Many sample models and tests Intuitive and user friendly Description Deep Learning with Kelp.Net is the ultimate reference for C# .Net developers who are passionate about deep learning. Readers will learn all the skills necessary to develop powerful, scalable and flexible deep learning models from a fluid and easy to use API. Upon completing the book the reader will have all the tools necessary to add powerful deep learning capabilities to their new or existing applications. What you will learn In-depth knowledge of Kelp.Net How to develop Deep Learning models C# Deep Learning programming Open-Computing Language (OpenCL) Loading and saving Deep Learning models How to develop and use activation functions How to test Deep Learning models Who This Book is For This book targets C# .Net developers who are passionate about deep learning yet want to do so from an easy and intuitive API. Table of Contents Introduction ML/DL Terms and Concepts Deep Instrumentation Kelp.Net Reference Loading and Saving Models Model Testing and Training Sample Deep Learning Tests Creating Your Own Deep Learning Tests Appendix A: Evaluation Metrics Appendix B: OpenCL About the Author Matt R. Cole is a seasoned developer and published author with over 30 years’ experience in Microsoft Windows, C, C++, C# and .Net. He is the owner of Evolved AI Solutions, a premier provider of advanced Machine Learning/Bio-AI technologies. He developed the first enterprise grade MicroService framework written completely in C# and .Net, which is used in production by a major hedge fund in NYC. He also developed the first Bio Artificial Intelligence framework which completely integrates mirror and canonical neurons. He continues to push the limits of Machine Learning, Biological Artificial Intelligence, Deep Learning and MicroServices. In his spare time Matt loves to continue his education and contribute to open source efforts such as Kelp.Net. His Website: www.evolvedaisolutions.com His LinkedIn Profile: www.linkedin.com/in/evolvedai/ His Blog: www.evolvedaisolutions.com/blog.html
Category: Computers

Hands On Machine Learning With C

Author : Matt R. Cole
ISBN : 9781788995245
Genre : Computers
File Size : 24.43 MB
Format : PDF, ePub, Mobi
Download : 629
Read : 208

Explore supervised and unsupervised learning techniques and add smart features to your applications Key Features Leverage machine learning techniques to build real-world applications Use the Accord.NET machine learning framework for reinforcement learning Implement machine learning techniques using Accord, nuML, and Encog Book Description The necessity for machine learning is everywhere, and most production enterprise applications are written in C# using tools such as Visual Studio, SQL Server, and Microsoft Azur2e. Hands-On Machine Learning with C# uniquely blends together an understanding of various machine learning concepts, techniques of machine learning, and various available machine learning tools through which users can add intelligent features.These tools include image and motion detection, Bayes intuition, and deep learning, to C# .NET applications. Using this book, you will learn to implement supervised and unsupervised learning algorithms and will be better equipped to create excellent predictive models. In addition, you will learn both supervised and unsupervised forms of regression, mainly logistic and linear regression, in depth. Next, you will use the nuML machine learning framework to learn how to create a simple decision tree. In the concluding chapters, you will use the Accord.Net machine learning framework to learn sequence recognition of handwritten numbers using dynamic time warping. We will also cover advanced concepts such as artificial neural networks, autoencoders, and reinforcement learning. By the end of this book, you will have developed a machine learning mindset and will be able to leverage C# tools, techniques, and packages to build smart, predictive, and real-world business applications. What you will learn Learn to parameterize a probabilistic problem Use Naive Bayes to visually plot and analyze data Plot a text-based representation of a decision tree using nuML Use the Accord.NET machine learning framework for associative rule-based learning Develop machine learning algorithms utilizing fuzzy logic Explore support vector machines for image recognition Understand dynamic time warping for sequence recognition Who this book is for Hands-On Machine Learning with C#is forC# .NETdevelopers who work on a range of platforms from .NET and Windows to mobile devices. Basic knowledge of statistics is required.
Category: Computers

C Machine Learning Projects

Author : Yoon Hyup Hwang
ISBN : 9781788996587
Genre : Computers
File Size : 30.66 MB
Format : PDF, Kindle
Download : 286
Read : 1135

Power your C# and .NET applications with exciting machine learning models and modular projects Key Features Produce classification, regression, association, and clustering models Expand your understanding of machine learning and C# Get to grips with C# packages such as Accord.net, LiveCharts, and Deedle Book Description Machine learning is applied in almost all kinds of real-world surroundings and industries, right from medicine to advertising; from finance to scientifc research. This book will help you learn how to choose a model for your problem, how to evaluate the performance of your models, and how you can use C# to build machine learning models for your future projects. You will get an overview of the machine learning systems and how you, as a C# and .NET developer, can apply your existing knowledge to the wide gamut of intelligent applications, all through a project-based approach. You will start by setting up your C# environment for machine learning with the required packages, Accord.NET, LiveCharts, and Deedle. We will then take you right from building classifcation models for spam email fltering and applying NLP techniques to Twitter sentiment analysis, to time-series and regression analysis for forecasting foreign exchange rates and house prices, as well as drawing insights on customer segments in e-commerce. You will then build a recommendation model for music genre recommendation and an image recognition model for handwritten digits. Lastly, you will learn how to detect anomalies in network and credit card transaction data for cyber attack and credit card fraud detections. By the end of this book, you will be putting your skills in practice and implementing your machine learning knowledge in real projects. What you will learn Set up the C# environment for machine learning with required packages Build classification models for spam email filtering Get to grips with feature engineering using NLP techniques for Twitter sentiment analysis Forecast foreign exchange rates using continuous and time-series data Make a recommendation model for music genre recommendation Familiarize yourself with munging image data and Neural Network models for handwritten-digit recognition Use Principal Component Analysis (PCA) for cyber attack detection One-Class Support Vector Machine for credit card fraud detection Who this book is for If you're a C# or .NET developer with good knowledge of C#, then this book is perfect for you to get Machine Learning into your projects and make smarter applications.
Category: Computers

Xamarin Forms Projects

Author : Daniel Hindrikes
ISBN : 9781839214745
Genre : Computers
File Size : 59.80 MB
Format : PDF, Kindle
Download : 232
Read : 1086

Xamarin.Forms Projects is a project-based guide that enables you to build effective mobile applications from the ground up using seven real-world examples. Starting with simpler projects to help you get up and running with the framework, the book explores all the components of Xamarin.Forms and takes you through to building complex projects ...
Category: Computers

Artificial Intelligence For Net Speech Language And Search

Author : Nishith Pathak
ISBN : 9781484229491
Genre : Computers
File Size : 81.1 MB
Format : PDF, ePub, Mobi
Download : 940
Read : 344

Get introduced to the world of artificial intelligence with this accessible and practical guide. Build applications that make intelligent use of language and user interaction to better compete in today’s marketplace. Discover how your application can deeply understand and interpret content on the web or a user’s machine, intelligently react to direct user interaction through speech or text, or make smart recommendations on products or services that are tailored to each individual user. With Microsoft Cognitive Services, you can do all this and more utilizing a set of easy-to-use APIs that can be consumed on the desktop, web, or mobile devices. Developers normally think of AI implementation as a tough task involving writing complex algorithms. This book aims to remove the anxiety by creating a cognitive application with a few lines of code. There is a wide range of Cognitive Services APIs available. This book focuses on some of the most useful and powerful ways that your application can make intelligent use of language. Artificial Intelligence for .NET: Speech, Language, and Search will show you how you can start building amazing capabilities into your applications today. What You'll Learn Understand the underpinnings of artificial intelligence through practical examples and scenarios Get started building an AI-based application in Visual Studio Build a text-based conversational interface for direct user interaction Use the Cognitive Services Speech API to recognize and interpret speech Look at different models of language, including natural language processing, and how to apply them in your Visual Studio application Reuse Bing search capabilities to better understand a user’s intention Work with recommendation engines and integrate them into your apps Who This Book Is For Developers working on a range of platforms, from .NET and Windows to mobile devices. Examples are given in C#. No prior experience with AI techniques or theory is required.
Category: Computers

Aiweek

Author :
ISBN : UOM:39015026545007
Genre : Artificial intelligence
File Size : 79.69 MB
Format : PDF, Mobi
Download : 935
Read : 1332

Category: Artificial intelligence

Learning F Functional Data Structures And Algorithms

Author : Adnan Masood
ISBN : 9781783553853
Genre : Computers
File Size : 80.93 MB
Format : PDF, Mobi
Download : 118
Read : 744

F# is a multi-paradigm programming language that encompasses object-oriented, imperative, and functional programming language properties. The F# functional programming language enables developers to write simple code to solve complex problems. Starting with the fundamental concepts of F# and functional programming, this book will walk you through basic problems, helping you to write functional and maintainable code. Using easy-to-understand examples, you will learn how to design data structures and algorithms in F# and apply these concepts in real-life projects. The book will cover built-in data structures and take you through enumerations and sequences. You will gain knowledge about stacks, graph-related algorithms, and implementations of binary trees. Next, you will understand the custom functional implementation of a queue, review sets and maps, and explore the implementation of a vector. Finally, you will find resources and references that will give you a comprehensive overview of F# ecosystem, helping you to go beyond the fundamentals.
Category: Computers

Test Driven Machine Learning

Author : Justin Bozonier
ISBN : 9781784396367
Genre : Computers
File Size : 53.13 MB
Format : PDF, ePub, Docs
Download : 977
Read : 1001

Control your machine learning algorithms using test-driven development to achieve quantifiable milestones About This Book Build smart extensions to pre-existing features at work that can help maximize their value Quantify your models to drive real improvement Take your knowledge of basic concepts, such as linear regression and Naive Bayes classification, to the next level and productionalize their models Play what-if games with your models and techniques by following the test-driven exploration process Who This Book Is For This book is intended for data technologists (scientists, analysts, or developers) with previous machine learning experience who are also comfortable reading code in Python. You may be starting, or have already started, a machine learning project at work and are looking for a way to deliver results quickly to enable rapid iteration and improvement. Those looking for examples of how to isolate issues in models and improve them will find ideas in this book to move forward. What You Will Learn Get started with an introduction to test-driven development and familiarize yourself with how to apply these concepts to machine learning Build and test a neural network deterministically, and learn to look for niche cases that cause odd model behaviour Learn to use the multi-armed bandit algorithm to make optimal choices in the face of an enormous amount of uncertainty Generate complex and simple random data to create a wide variety of test cases that can be codified into tests Develop models iteratively, even when using a third-party library Quantify model quality to enable collaboration and rapid iteration Adopt simpler approaches to common machine learning algorithms Take behaviour-driven development principles to articulate test intent In Detail Machine learning is the process of teaching machines to remember data patterns, using them to predict future outcomes, and offering choices that would appeal to individuals based on their past preferences. Machine learning is applicable to a lot of what you do every day. As a result, you can't take forever to deliver your first iteration of software. Learning to build machine learning algorithms within a controlled test framework will speed up your time to deliver, quantify quality expectations with your clients, and enable rapid iteration and collaboration. This book will show you how to quantifiably test machine learning algorithms. The very different, foundational approach of this book starts every example algorithm with the simplest thing that could possibly work. With this approach, seasoned veterans will find simpler approaches to beginning a machine learning algorithm. You will learn how to iterate on these algorithms to enable rapid delivery and improve performance expectations. The book begins with an introduction to test driving machine learning and quantifying model quality. From there, you will test a neural network, predict values with regression, and build upon regression techniques with logistic regression. You will discover how to test different approaches to naive bayes and compare them quantitatively, along with how to apply OOP (Object-Oriented Programming) and OOP patterns to test-driven code, leveraging SciKit-Learn. Finally, you will walk through the development of an algorithm which maximizes the expected value of profit for a marketing campaign by combining one of the classifiers covered with the multiple regression example in the book. Style and approach An example-driven guide that builds a deeper knowledge and understanding of iterative machine learning development, test by test. Each topic develops solutions using failing tests to illustrate problems; these are followed by steps to pass the tests, simply and straightforwardly. Topics which use generated data explore how the data was generated, alongside explanations of the assumptions behind different machine learning techniques.
Category: Computers

Professional F 2 0

Author : Ted Neward
ISBN : 1118008278
Genre : Computers
File Size : 59.75 MB
Format : PDF, Docs
Download : 949
Read : 958

Category: Computers

Practical Azure Sql Database For Modern Developers

Author : Davide Mauri
ISBN : 1484263693
Genre : Computers
File Size : 30.75 MB
Format : PDF
Download : 460
Read : 960

Here is the expert-level, insider guidance you need on using Azure SQL Database as your back-end data store. This book highlights best practices in everything ranging from full-stack projects to mobile applications to critical, back-end APIs. The book provides instruction on accessing your data from any language and platform. And you learn how to push processing-intensive work into the database engine to be near the data and avoid undue networking traffic. Azure SQL is explained from a developer's point of view, helping you master its feature set and create applications that perform well and delight users. Core to the book is showing you how Azure SQL Database provides relational and post-relational support so that any workload can be managed with easy accessibility from any platform and any language. You will learn about features ranging from lock-free tables to columnstore indexes, and about support for data formats ranging from JSON and key-values to the nodes and edges in the graph database paradigm. Reading this book prepares you to deal with almost all data management challenges, allowing you to create lean and specialized solutions having the elasticity and scalability that are needed in the modern world. What You Will Learn Master Azure SQL Database in your development projects from design to the CI/CD pipeline Access your data from any programming language and platform Combine key-value, JSON, and relational data in the same database Push data-intensive compute work into the database for improved efficiency Delight your customers by detecting and improving poorly performing queries Enhance performance through features such as columnstore indexes and lock-free tables Build confidence in your mastery of Azure SQL Database's feature set Who This Book Is For Developers of applications and APIs that benefit from cloud database support, developers who wish to master their tools (including Azure SQL Database, and those who want their applications to be known for speedy performance and the elegance of their code
Category: Computers

Apache Spark 2 X Machine Learning Cookbook

Author : Siamak Amirghodsi
ISBN : 9781782174608
Genre : Computers
File Size : 43.79 MB
Format : PDF, ePub, Mobi
Download : 414
Read : 622

Simplify machine learning model implementations with Spark About This Book Solve the day-to-day problems of data science with Spark This unique cookbook consists of exciting and intuitive numerical recipes Optimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your data Who This Book Is For This book is for Scala developers with a fairly good exposure to and understanding of machine learning techniques, but lack practical implementations with Spark. A solid knowledge of machine learning algorithms is assumed, as well as hands-on experience of implementing ML algorithms with Scala. However, you do not need to be acquainted with the Spark ML libraries and ecosystem. What You Will Learn Get to know how Scala and Spark go hand-in-hand for developers when developing ML systems with Spark Build a recommendation engine that scales with Spark Find out how to build unsupervised clustering systems to classify data in Spark Build machine learning systems with the Decision Tree and Ensemble models in Spark Deal with the curse of high-dimensionality in big data using Spark Implement Text analytics for Search Engines in Spark Streaming Machine Learning System implementation using Spark In Detail Machine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability, and optimization. Learning about algorithms enables a wide range of applications, from everyday tasks such as product recommendations and spam filtering to cutting edge applications such as self-driving cars and personalized medicine. You will gain hands-on experience of applying these principles using Apache Spark, a resilient cluster computing system well suited for large-scale machine learning tasks. This book begins with a quick overview of setting up the necessary IDEs to facilitate the execution of code examples that will be covered in various chapters. It also highlights some key issues developers face while working with machine learning algorithms on the Spark platform. We progress by uncovering the various Spark APIs and the implementation of ML algorithms with developing classification systems, recommendation engines, text analytics, clustering, and learning systems. Toward the final chapters, we'll focus on building high-end applications and explain various unsupervised methodologies and challenges to tackle when implementing with big data ML systems. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand how to optimize your work flow and resolve problems when working with complex data modeling tasks and predictive algorithms. This is a valuable resource for data scientists and those working on large scale data projects.
Category: Computers

Xamarin Forms Projects

Author : Johan Karlsson
ISBN : 9781789531299
Genre : Computers
File Size : 60.8 MB
Format : PDF
Download : 677
Read : 650

This book is your path to getting started with Xamarin Forms. It covers a lot of hot mobile features such as augmented reality (AR) and machine learning (ML) as well as more basic topics, giving you tips and advice on what development environment to strive for.
Category: Computers

Python Deeper Insights Into Machine Learning

Author : Sebastian Raschka
ISBN : 9781787128545
Genre : Computers
File Size : 20.58 MB
Format : PDF, ePub
Download : 446
Read : 1057

Leverage benefits of machine learning techniques using Python About This Book Improve and optimise machine learning systems using effective strategies. Develop a strategy to deal with a large amount of data. Use of Python code for implementing a range of machine learning algorithms and techniques. Who This Book Is For This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts. What You Will Learn Learn to write clean and elegant Python code that will optimize the strength of your algorithms Uncover hidden patterns and structures in data with clustering Improve accuracy and consistency of results using powerful feature engineering techniques Gain practical and theoretical understanding of cutting-edge deep learning algorithms Solve unique tasks by building models Get grips on the machine learning design process In Detail Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project. The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems. The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it's time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems. At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering. Style and approach This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.
Category: Computers

Professional C

Author : Simon Robinson
ISBN : 1861004990
Genre : Computers
File Size : 61.19 MB
Format : PDF, Kindle
Download : 757
Read : 607

.NET is Microsoft's platform for Web Services, allowing applications to communicate and share data over the Internet, regardless of operating system or programming language. Each new .NET language (VB.NET, C#) is framework-compliant (as opposed to their previous versions, which were not connected) as they are all built on .NET's Common Language Runtime. Wrox's language-specific route to .NET information means that developers can choose from a number of books written on the same .NET technology from the perspective of their chosen language.
Category: Computers

Real Time Web Application Development

Author : Rami Vemula
ISBN : 9781484232705
Genre : Computers
File Size : 82.2 MB
Format : PDF
Download : 913
Read : 153

Design, develop, and deploy a real-world web application by leveraging modern open source technologies. This book shows you how to use ASP.NET Core to build cross-platform web applications along with SignalR to enrich the application by enabling real-time communication between server and clients. You will use Docker to containerize your application, integrate with GitHub to package the application, and provide continuous deployment to Azure’s IaaS platform. Along the way, Real-Time Web Application Development covers topics including designing a Materialize CSS theme, using a test-driven development approach with xUnit.net, and securing your application with the OAuth 2.0 protocol. To further your understanding of the technology, you will learn logging and exception handling; navigation using view components; and how to work with forms and validations. The rich code samples from this book can be used to retrofit or upgrade existing ASP.NET Core applications. What You Will Learn Design and develop a real-world web application Implement security and data storage with OAuth2 and Azure Table Storage Orchestrate real-time notifications through SignalR Use GitHub and Travis CI for continuous integration of code Master Docker containerization and continuous deployment with Docker Cloud to Azure Linux virtual machines Who This Book Is For Developers and software engineers interested in learning an end-to-end approach to application development using Microsoft technologies.
Category: Computers

Pc Ai

Author :
ISBN : IND:30000120017284
Genre : Artificial intelligence
File Size : 21.52 MB
Format : PDF, ePub, Docs
Download : 869
Read : 1020

Category: Artificial intelligence