IPYTHON-INTERACTIVE-COMPUTING-AND-VISUALIZATION-COOKBOOK

Download Ipython-interactive-computing-and-visualization-cookbook ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to IPYTHON-INTERACTIVE-COMPUTING-AND-VISUALIZATION-COOKBOOK book pdf for free now.

Ipython Interactive Computing And Visualization Cookbook

Author : Cyrille Rossant
ISBN : 9781785881930
Genre : Computers
File Size : 65.30 MB
Format : PDF, Docs
Download : 332
Read : 255

Learn to use IPython and Jupyter Notebook for your data analysis and visualization work. Key Features Leverage the Jupyter Notebook for interactive data science and visualization Become an expert in high-performance computing and visualization for data analysis and scientific modeling A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations Book Description Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics. What you will learn Master all features of the Jupyter Notebook Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments Visualize data and create interactive plots in the Jupyter Notebook Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn) Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV Simulate deterministic and stochastic dynamical systems in Python Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theory Who this book is for This book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Category: Computers

Learning Ipython For Interactive Computing And Data Visualization

Author : Cyrille Rossant
ISBN : 9781783986996
Genre : Computers
File Size : 46.51 MB
Format : PDF, Kindle
Download : 568
Read : 859

Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and ipyparallel Who This Book Is For This book targets students, teachers, researchers, engineers, analysts, journalists, hobbyists, and all data enthusiasts who are interested in analyzing and visualizing real-world datasets. If you are new to programming and data analysis, this book is exactly for you. If you're already familiar with another language or analysis software, you will also appreciate this introduction to the Python data analysis platform. Finally, there are more technical topics for advanced readers. No prior experience is required; this book contains everything you need to know. What You Will Learn Install Anaconda and code in Python in the Jupyter Notebook Load and explore datasets interactively Perform complex data manipulations effectively with pandas Create engaging data visualizations with matplotlib and seaborn Simulate mathematical models with NumPy Visualize and process images interactively in the Jupyter Notebook with scikit-image Accelerate your code with Numba, Cython, and IPython.parallel Extend the Notebook interface with HTML, JavaScript, and D3 In Detail Python is a user-friendly and powerful programming language. IPython offers a convenient interface to the language and its analysis libraries, while the Jupyter Notebook is a rich environment well-adapted to data science and visualization. Together, these open source tools are widely used by beginners and experts around the world, and in a huge variety of fields and endeavors. This book is a beginner-friendly guide to the Python data analysis platform. After an introduction to the Python language, IPython, and the Jupyter Notebook, you will learn how to analyze and visualize data on real-world examples, how to create graphical user interfaces for image processing in the Notebook, and how to perform fast numerical computations for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By the end of this book, you will be able to perform in-depth analyses of all sorts of data. Style and approach This is a hands-on beginner-friendly guide to analyze and visualize data on real-world examples with Python and the Jupyter Notebook.
Category: Computers

Social Media Shaping E Publishing And Academia

Author : Nashrawan Taha
ISBN : 9783319553542
Genre : Social Science
File Size : 68.19 MB
Format : PDF, ePub, Docs
Download : 671
Read : 268

This book gathers the best research contributions to the 1st international conference of e-publishing addressing the theme “Social Media Shaping e-Publishing” at the University of Jordan Library, Jordan (July 2015). The book discusses trends and challenges in the field of e-publishing along with their implications for academic publishing, information services, e-learning and other areas where electronic publishing is imperative. In particular, this book focusses on (1) The role of Social Media in Shaping e-Publishing, (2) Applications of Social Media in Libraries and Information Centers, (3) The role of Bibliographic Databases in e-Publishing, (4) e-Publishing in Arabic Language: Issues and Challenges, (5) Digital Environment: Storage and Retrieval, and (6) Empirical Experiments on Social Media and e-Publishing Usages among students and other educational institutes.
Category: Social Science

Python Data Science Handbook

Author : Jake VanderPlas
ISBN : 9781491912133
Genre : Computers
File Size : 58.93 MB
Format : PDF, ePub
Download : 738
Read : 737

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Category: Computers

Large Scale Machine Learning With Python

Author : Bastiaan Sjardin
ISBN : 9781785888021
Genre : Computers
File Size : 72.22 MB
Format : PDF, ePub, Docs
Download : 750
Read : 1044

Learn to build powerful machine learning models quickly and deploy large-scale predictive applications About This Book Design, engineer and deploy scalable machine learning solutions with the power of Python Take command of Hadoop and Spark with Python for effective machine learning on a map reduce framework Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful. What You Will Learn Apply the most scalable machine learning algorithms Work with modern state-of-the-art large-scale machine learning techniques Increase predictive accuracy with deep learning and scalable data-handling techniques Improve your work by combining the MapReduce framework with Spark Build powerful ensembles at scale Use data streams to train linear and non-linear predictive models from extremely large datasets using a single machine In Detail Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. Style and Approach This efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly. Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production. This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.
Category: Computers

Web And Network Data Science

Author : Thomas W. Miller
ISBN : 9780133887648
Genre : Computers
File Size : 44.20 MB
Format : PDF, Kindle
Download : 599
Read : 574

Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.
Category: Computers

Jupyter Cookbook

Author : Dan Toomey
ISBN : 9781788839747
Genre : Computers
File Size : 22.49 MB
Format : PDF, Mobi
Download : 983
Read : 1023

Leverage the power of the popular Jupyter notebooks to simplify your data science tasks without any hassle Key Features Create and share interactive documents with live code, text and visualizations Integrate popular programming languages such as Python, R, Julia, Scala with Jupyter Develop your widgets and interactive dashboards with these innovative recipes Book Description Jupyter has garnered a strong interest in the data science community of late, as it makes common data processing and analysis tasks much simpler. This book is for data science professionals who want to master various tasks related to Jupyter to create efficient, easy-to-share, scientific applications. The book starts with recipes on installing and running the Jupyter Notebook system on various platforms and configuring the various packages that can be used with it. You will then see how you can implement different programming languages and frameworks, such as Python, R, Julia, JavaScript, Scala, and Spark on your Jupyter Notebook. This book contains intuitive recipes on building interactive widgets to manipulate and visualize data in real time, sharing your code, creating a multi-user environment, and organizing your notebook. You will then get hands-on experience with Jupyter Labs, microservices, and deploying them on the web. By the end of this book, you will have taken your knowledge of Jupyter to the next level to perform all key tasks associated with it. What you will learn Install Jupyter and configure engines for Python, R, Scala and more Access and retrieve data on Jupyter Notebooks Create interactive visualizations and dashboards for different scenarios Convert and share your dynamic codes using HTML, JavaScript, Docker, and more Create custom user data interactions using various Jupyter widgets Manage user authentication and file permissions Interact with Big Data to perform numerical computing and statistical modeling Get familiar with Jupyter's next-gen user interface - JupyterLab Who this book is for This cookbook is for data science professionals, developers, technical data analysts, and programmers who want to execute technical coding, visualize output, and do scientific computing in one tool. Prior understanding of data science concepts will be helpful, but not mandatory, to use this book.
Category: Computers

Learning Jupyter 5

Author : Dan Toomey
ISBN : 9781789137446
Genre : Computers
File Size : 21.84 MB
Format : PDF, Kindle
Download : 543
Read : 624

Create and share livecode, equations, visualizations, and explanatory text, in both a single document and a web browser with Jupyter Key Features Learn how to use Jupyter 5.x features such as cell tagging and attractive table styles Leverage big data tools and datasets with different Python packages Explore multiple-user Jupyter Notebook servers Book Description The Jupyter Notebook allows you to create and share documents that contain live code, equations, visualizations, and explanatory text. The Jupyter Notebook system is extensively used in domains such as data cleaning and transformation, numerical simulation, statistical modeling, and machine learning. Learning Jupyter 5 will help you get to grips with interactive computing using real-world examples. The book starts with a detailed overview of the Jupyter Notebook system and its installation in different environments. Next, you will learn to integrate the Jupyter system with different programming languages such as R, Python, Java, JavaScript, and Julia, and explore various versions and packages that are compatible with the Notebook system. Moving ahead, you will master interactive widgets and namespaces and work with Jupyter in a multi-user mode. By the end of this book, you will have used Jupyter with a big dataset and be able to apply all the functionalities you’ve explored throughout the book. You will also have learned all about the Jupyter Notebook and be able to start performing data transformation, numerical simulation, and data visualization. What you will learn Install and run the Jupyter Notebook system on your machine Implement programming languages such as R, Python, Julia, and JavaScript with the Jupyter Notebook Use interactive widgets to manipulate and visualize data in real time Start sharing your Notebook with colleagues Invite your colleagues to work with you on the same Notebook Organize your Notebook using Jupyter namespaces Access big data in Jupyter for dealing with large datasets using Spark Who this book is for Learning Jupyter 5 is for developers, data scientists, machine learning users, and anyone working on data analysis or data science projects across different teams. Data science professionals will also find this book useful for performing technical and scientific computing collaboratively.
Category: Computers

Interactive Applications Using Matplotlib

Author : Benjamin V. Root
ISBN : 9781783988853
Genre : Computers
File Size : 87.65 MB
Format : PDF, ePub, Mobi
Download : 573
Read : 369

This book is intended for Python programmers who want to do more than just see their data. Experience with GUI toolkits is not required, so this book can be an excellent complement to other GUI programming resources.
Category: Computers

Mining The Social Web

Author : Matthew A. Russell
ISBN : 9781449368227
Genre : COMPUTERS
File Size : 56.92 MB
Format : PDF, ePub, Mobi
Download : 136
Read : 977

How can you tap into the wealth of social web data to discover who’s making connections with whom, what they’re talking about, and where they’re located? With this expanded and thoroughly revised edition, you’ll learn how to acquire, analyze, and summarize data from all corners of the social web, including Facebook, Twitter, LinkedIn, Google+, GitHub, email, websites, and blogs. Employ the Natural Language Toolkit, NetworkX, and other scientific computing tools to mine popular social web sites Apply advanced text-mining techniques, such as clustering and TF-IDF, to extract meaning from human language data Bootstrap interest graphs from GitHub by discovering affinities among people, programming languages, and coding projects Build interactive visualizations with D3.js, an extraordinarily flexible HTML5 and JavaScript toolkit Take advantage of more than two-dozen Twitter recipes, presented in O’Reilly’s popular "problem/solution/discussion" cookbook format The example code for this unique data science book is maintained in a public GitHub repository. It’s designed to be easily accessible through a turnkey virtual machine that facilitates interactive learning with an easy-to-use collection of IPython Notebooks.
Category: COMPUTERS