Download Data Science ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to DATA SCIENCE book pdf for free now.

Spark For Data Science

Author : Srinivas Duvvuri
ISBN : 9781785884771
Genre : Computers
File Size : 46.72 MB
Format : PDF, ePub, Docs
Download : 326
Read : 162

Analyze your data and delve deep into the world of machine learning with the latest Spark version, 2.0 About This Book Perform data analysis and build predictive models on huge datasets that leverage Apache Spark Learn to integrate data science algorithms and techniques with the fast and scalable computing features of Spark to address big data challenges Work through practical examples on real-world problems with sample code snippets Who This Book Is For This book is for anyone who wants to leverage Apache Spark for data science and machine learning. If you are a technologist who wants to expand your knowledge to perform data science operations in Spark, or a data scientist who wants to understand how algorithms are implemented in Spark, or a newbie with minimal development experience who wants to learn about Big Data Analytics, this book is for you! What You Will Learn Consolidate, clean, and transform your data acquired from various data sources Perform statistical analysis of data to find hidden insights Explore graphical techniques to see what your data looks like Use machine learning techniques to build predictive models Build scalable data products and solutions Start programming using the RDD, DataFrame and Dataset APIs Become an expert by improving your data analytical skills In Detail This is the era of Big Data. The words ҂ig Data' implies big innovation and enables a competitive advantage for businesses. Apache Spark was designed to perform Big Data analytics at scale, and so Spark is equipped with the necessary algorithms and supports multiple programming languages. Whether you are a technologist, a data scientist, or a beginner to Big Data analytics, this book will provide you with all the skills necessary to perform statistical data analysis, data visualization, predictive modeling, and build scalable data products or solutions using Python, Scala, and R. With ample case studies and real-world examples, Spark for Data Science will help you ensure the successful execution of your data science projects. Style and approach This book takes a step-by-step approach to statistical analysis and machine learning, and is explained in a conversational and easy-to-follow style. Each topic is explained sequentially with a focus on the fundamentals as well as the advanced concepts of algorithms and techniques. Real-world examples with sample code snippets are also included.
Category: Computers

Data Science

Author : Herbert Jones
ISBN : 172964239X
Genre :
File Size : 66.39 MB
Format : PDF, Docs
Download : 807
Read : 1009

Did you know that the value of data usage has increased job opportunities, but that there are few specialists? These days, everyone is aware of the role that data can play, whether it is an election, business or education. But how can you start working in a wide interdisciplinary field that is occupied with so much hype? This book, Data Science: What the Best Data Scientists Know About Data Analytics, Data Mining, Statistics, Machine Learning, and Big Data - That You Don't, presents you with a step-by-step approach to Data Science as well as secrets only known by the best Data Scientists. It combines analytical engineering, Machine Learning, Big Data, Data Mining, and Statistics in an easy to read and digest method. Data gathered from scientific measurements, customers, IoT sensors, and so on is very important only when one can draw meaning from it. Data Scientists are professionals that help disclose interesting and rewarding challenges of exploring, observing, analyzing, and interpreting data. To do that, they apply special techniques that help them discover the meaning of data. Becoming the best Data Scientist is more than just mastering analytic tools and techniques. The real deal lies in the way you apply your creative ability like expert Data Scientists. This book will help you discover that and get you there. The goal with Data Science: What the Best Data Scientists Know About Data Analytics, Data Mining, Statistics, Machine Learning, and Big Data - That You Don't is to help you expand your skills from being a basic Data Scientist to becoming an expert Data Scientist ready to solve real-world data centric issues. At the end of this book, you will learn how to combine Machine Learning, Data Mining, analytics, and programming, and extract real knowledge from data. As you read, you will discover important statistical techniques and algorithms that are helpful in learning Data Science. When you have finished, you will have a strong foundation to help you explore many other fields related to Data Science. This book will discuss the following topics: What Data Science is What it takes to become an expert in Data Science Best Data Mining techniques to apply in data Data visualization Logistic regression Data engineering Machine Learning Big Data Analytics And much more! Don't waste any time. Grab your copy today and learn quick tips from the best Data scientists!

Introduction To Data Science

Author : Rafael A. Irizarry
ISBN : 9781000708035
Genre : Mathematics
File Size : 85.49 MB
Format : PDF, Kindle
Download : 996
Read : 943

Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Category: Mathematics

Practical Statistics For Data Scientists

Author : Peter Bruce
ISBN : 9781491952917
Genre : Computers
File Size : 56.75 MB
Format : PDF, Mobi
Download : 544
Read : 1164

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Category: Computers

Data Science

Author : Vijay Kotu
ISBN : 9780128147627
Genre : Computers
File Size : 63.85 MB
Format : PDF, ePub, Docs
Download : 717
Read : 377

Learn the basics of Data Science through an easy to understand conceptual framework and immediately practice using RapidMiner platform. Whether you are brand new to data science or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Science has become an essential tool to extract value from data for any organization that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, engineers, and analytics professionals and for anyone who works with data. You’ll be able to: Gain the necessary knowledge of different data science techniques to extract value from data. Master the concepts and inner workings of 30 commonly used powerful data science algorithms. Implement step-by-step data science process using using RapidMiner, an open source GUI based data science platform Data Science techniques covered: Exploratory data analysis, Visualization, Decision trees, Rule induction, k-nearest neighbors, Naïve Bayesian classifiers, Artificial neural networks, Deep learning, Support vector machines, Ensemble models, Random forests, Regression, Recommendation engines, Association analysis, K-Means and Density based clustering, Self organizing maps, Text mining, Time series forecasting, Anomaly detection, Feature selection and more... Contains fully updated content on data science, including tactics on how to mine business data for information Presents simple explanations for over twenty powerful data science techniques Enables the practical use of data science algorithms without the need for programming Demonstrates processes with practical use cases Introduces each algorithm or technique and explains the workings of a data science algorithm in plain language Describes the commonly used setup options for the open source tool RapidMiner
Category: Computers

Modern Data Science With R

Author : Benjamin S. Baumer
ISBN : 9781498724586
Genre : Business & Economics
File Size : 60.82 MB
Format : PDF, Mobi
Download : 695
Read : 776

Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world problems with data. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling statistical questions. Contemporary data science requires a tight integration of knowledge from statistics, computer science, mathematics, and a domain of application. This book will help readers with some background in statistics and modest prior experience with coding develop and practice the appropriate skills to tackle complex data science projects. The book features a number of exercises and has a flexible organization conducive to teaching a variety of semester courses.
Category: Business & Economics

Data Science With Jupyter

Author : Prateek Gupta
ISBN : 9789388511377
Genre : Computers
File Size : 78.55 MB
Format : PDF, Kindle
Download : 953
Read : 1166

Step-by-step guide to practising data science techniques with Jupyter notebooks Description Modern businesses are awash with data, making data driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with just enough knowledge of Python in conjunction with skills to use powerful tool such as Jupyter Notebook in order to succeed in the role of a data scientist. The book starts with a brief introduction to the world of data science and the opportunities you may come across along with an overview of the key topics covered in the book. You will learn how to setup Anaconda installation which comes with Jupyter and preinstalled Python packages. Before diving in to several supervised, unsupervised and other machine learning techniques, you’ll learn how to use basic data structures, functions, libraries and packages required to import, clean, visualize and process data. Several machine learning techniques such as regression, classification, clustering, time-series etc have been explained with the use of practical examples and by comparing the performance of various models. By the end of the book, you will come across few case studies to put your knowledge to practice and solve real-life business problems such as building a movie recommendation engine, classifying spam messages, predicting the ability of a borrower to repay loan on time and time series forecasting of housing prices. Remember to practice additional examples provided in the code bundle of the book to master these techniques. Audience The book is intended for anyone looking for a career in data science, all aspiring data scientists who want to learn the most powerful programming language in Machine Learning or working professionals who want to switch their career in Data Science. While no prior knowledge of Data Science or related technologies is assumed, it will be helpful to have some programming experience. Key Features · Acquire Python skills to do independent data science projects · Learn the basics of linear algebra and statistical science in Python way · Understand how and when they're used in data science · Build predictive models, tune their parameters and analyze performance in few steps · Cluster, transform, visualize, and extract insights from unlabelled datasets · Learn how to use matplotlib and seaborn for data visualization · Implement and save machine learning models for real-world business scenarios Table of Contents 1 ) Data Science Fundamentals 2 ) Installing Software and Setting up 3 ) Lists and Dictionaries 4 ) Function and Packages 5 ) NumPy Foundation 6 ) Pandas and Dataframe 7 ) Interacting with Databases 8 ) Thinking Statistically in Data Science 9 ) How to import data in Python? 10 ) Cleaning of imported data 11 ) Data Visualization 12 ) Data Pre-processing 13 ) Supervised Machine Learning 14 ) Unsupervised Machine Learning 15 ) Handling Time-Series Data 16 ) Time-Series Methods 17 ) Case Study – 1 18 ) Case Study – 2 19 ) Case Study – 3 20 ) Case Study – 4
Category: Computers

Research In Data Science

Author : Ellen Gasparovic
ISBN : 9783030115661
Genre : Mathematics
File Size : 68.20 MB
Format : PDF, ePub
Download : 843
Read : 446

This edited volume on data science features a variety of research ranging from theoretical to applied and computational topics. Aiming to establish the important connection between mathematics and data science, this book addresses cutting edge problems in predictive modeling, multi-scale representation and feature selection, statistical and topological learning, and related areas. Contributions study topics such as the hubness phenomenon in high-dimensional spaces, the use of a heuristic framework for testing the multi-manifold hypothesis for high-dimensional data, the investigation of interdisciplinary approaches to multi-dimensional obstructive sleep apnea patient data, and the inference of a dyadic measure and its simplicial geometry from binary feature data. Based on the first Women in Data Science and Mathematics (WiSDM) Research Collaboration Workshop that took place in 2017 at the Institute for Compuational and Experimental Research in Mathematics (ICERM) in Providence, Rhode Island, this volume features submissions from several of the working groups as well as contributions from the wider community. The volume is suitable for researchers in data science in industry and academia.
Category: Mathematics

Python For Data Science For Dummies

Author : John Paul Mueller
ISBN : 9781119547624
Genre : Computers
File Size : 73.36 MB
Format : PDF, ePub
Download : 290
Read : 1118

The fast and easy way to learn Python programming and statistics Python is a general-purpose programming language created in the late 1980s—and named after Monty Python—that's used by thousands of people to do things from testing microchips at Intel, to powering Instagram, to building video games with the PyGame library. Python For Data Science For Dummies is written for people who are new to data analysis, and discusses the basics of Python data analysis programming and statistics. The book also discusses Google Colab, which makes it possible to write Python code in the cloud. Get started with data science and Python Visualize information Wrangle data Learn from data The book provides the statistical background needed to get started in data science programming, including probability, random distributions, hypothesis testing, confidence intervals, and building regression models for prediction.
Category: Computers

Data Science Projects With Python

Author : Stephen Klosterman
ISBN : 9781838552602
Genre : Computers
File Size : 75.35 MB
Format : PDF, Docs
Download : 907
Read : 915

Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key Features Learn techniques to use data to identify the exact problem to be solved Visualize data using different graphs Identify how to select an appropriate algorithm for data extraction Book Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools in Python, with the help of realistic data. The book will help you understand how you can use pandas and Matplotlib to critically examine a dataset with summary statistics and graphs, and extract the insights you seek to derive. You will continue to build on your knowledge as you learn how to prepare data and feed it to machine learning algorithms, such as regularized logistic regression and random forest, using the scikit-learn package. You’ll discover how to tune the algorithms to provide the best predictions on new and, unseen data. As you delve into later chapters, you’ll be able to understand the working and output of these algorithms and gain insight into not only the predictive capabilities of the models but also their reasons for making these predictions. By the end of this book, you will have the skills you need to confidently use various machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learn Install the required packages to set up a data science coding environment Load data into a Jupyter Notebook running Python Use Matplotlib to create data visualizations Fit a model using scikit-learn Use lasso and ridge regression to reduce overfitting Fit and tune a random forest model and compare performance with logistic regression Create visuals using the output of the Jupyter Notebook Who this book is for If you are a data analyst, data scientist, or a business analyst who wants to get started with using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of computer programming and data analytics is a must. Familiarity with mathematical concepts such as algebra and basic statistics will be useful.
Category: Computers