Bandit Algorithms For Website Optimization

Download Bandit Algorithms For Website Optimization ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to Bandit Algorithms For Website Optimization book pdf for free now.

Bandit Algorithms For Website Optimization

Author : John Myles White
ISBN : 9781449341589
Genre : Computers
File Size : 86.49 MB
Format : PDF, ePub, Docs
Download : 801
Read : 1240

When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success. This is the first developer-focused book on bandit algorithms, which were previously described only in research papers. You’ll quickly learn the benefits of several simple algorithms—including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms—by working through code examples written in Python, which you can easily adapt for deployment on your own website. Learn the basics of A/B testing—and recognize when it’s better to use bandit algorithms Develop a unit testing framework for debugging bandit algorithms Get additional code examples written in Julia, Ruby, and JavaScript with supplemental online materials
Category: Computers

Practical Statistics For Data Scientists

Author : Peter Bruce
ISBN : 9781492072911
Genre : Computers
File Size : 87.35 MB
Format : PDF, ePub, Docs
Download : 231
Read : 510

Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what’s important and what’s not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher-quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that "learn" from data Unsupervised learning methods for extracting meaning from unlabeled data
Category: Computers

Reinforcement Learning

Author : Phil Winder Ph.D.
ISBN : 9781492072362
Genre : Computers
File Size : 58.21 MB
Format : PDF, ePub
Download : 476
Read : 1055

Reinforcement learning (RL) will deliver one of the biggest breakthroughs in AI over the next decade, enabling algorithms to learn from their environment to achieve arbitrary goals. This exciting development avoids constraints found in traditional machine learning (ML) algorithms. This practical book shows data science and AI professionals how to learn by reinforcementand enable a machine to learn by itself. Author Phil Winder of Winder Research covers everything from basic building blocks to state-of-the-art practices. You'll explore the current state of RL, focus on industrial applications, learnnumerous algorithms, and benefit from dedicated chapters on deploying RL solutions to production. This is no cookbook; doesn't shy away from math and expects familiarity with ML. Learn what RL is and how the algorithms help solve problems Become grounded in RL fundamentals including Markov decision processes, dynamic programming, and temporal difference learning Dive deep into a range of value and policy gradient methods Apply advanced RL solutions such as meta learning, hierarchical learning, multi-agent, and imitation learning Understand cutting-edge deep RL algorithms including Rainbow, PPO, TD3, SAC, and more Get practical examples through the accompanying website
Category: Computers

Business Data Science Combining Machine Learning And Economics To Optimize Automate And Accelerate Business Decisions

Author : Matt Taddy
ISBN : 9781260452785
Genre : Business & Economics
File Size : 69.29 MB
Format : PDF, Mobi
Download : 158
Read : 765

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: •Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling•Understand how use ML tools in real world business problems, where causation matters more that correlation•Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.
Category: Business & Economics

Multi Armed Bandit Allocation Indices

Author : John Gittins
ISBN : 1119990211
Genre : Mathematics
File Size : 66.67 MB
Format : PDF, ePub, Docs
Download : 749
Read : 1256

In 1989 the first edition of this book set out Gittins' pioneering index solution to the multi-armed bandit problem and his subsequent investigation of a wide of sequential resource allocation and stochastic scheduling problems. Since then there has been a remarkable flowering of new insights, generalizations and applications, to which Glazebrook and Weber have made major contributions. This second edition brings the story up to date. There are new chapters on the achievable region approach to stochastic optimization problems, the construction of performance bounds for suboptimal policies, Whittle's restless bandits, and the use of Lagrangian relaxation in the construction and evaluation of index policies. Some of the many varied proofs of the index theorem are discussed along with the insights that they provide. Many contemporary applications are surveyed, and over 150 new references are included. Over the past 40 years the Gittins index has helped theoreticians and practitioners to address a huge variety of problems within chemometrics, economics, engineering, numerical analysis, operational research, probability, statistics and website design. This new edition will be an important resource for others wishing to use this approach.
Category: Mathematics

Books In Print Supplement

Author :
ISBN : STANFORD:36105025417838
Genre : American literature
File Size : 58.35 MB
Format : PDF, Docs
Download : 825
Read : 656

Category: American literature

Optimal Learning

Author : Warren B. Powell
ISBN : 9781118309841
Genre : Mathematics
File Size : 86.29 MB
Format : PDF, Mobi
Download : 923
Read : 516

Learn the science of collecting information to make effective decisions Everyday decisions are made without the benefit of accurate information. Optimal Learning develops the needed principles for gathering information to make decisions, especially when collecting information is time-consuming and expensive. Designed for readers with an elementary background in probability and statistics, the book presents effective and practical policies illustrated in a wide range of applications, from energy, homeland security, and transportation to engineering, health, and business. This book covers the fundamental dimensions of a learning problem and presents a simple method for testing and comparing policies for learning. Special attention is given to the knowledge gradient policy and its use with a wide range of belief models, including lookup table and parametric and for online and offline problems. Three sections develop ideas with increasing levels of sophistication: Fundamentals explores fundamental topics, including adaptive learning, ranking and selection, the knowledge gradient, and bandit problems Extensions and Applications features coverage of linear belief models, subset selection models, scalar function optimization, optimal bidding, and stopping problems Advanced Topics explores complex methods including simulation optimization, active learning in mathematical programming, and optimal continuous measurements Each chapter identifies a specific learning problem, presents the related, practical algorithms for implementation, and concludes with numerous exercises. A related website features additional applications and downloadable software, including MATLAB and the Optimal Learning Calculator, a spreadsheet-based package that provides an introduction to learning and a variety of policies for learning.
Category: Mathematics

Analytics In Promotional Pricing And Advertising

Author : Lennart Baardman
ISBN : OCLC:1120105762
Genre :
File Size : 37.70 MB
Format : PDF, ePub
Download : 768
Read : 735

Big data and the internet are shifting the paradigm in promotional pricing and advertising. The amount of readily available data from both point-of-sale systems and web cookies has grown, enabling a shift from qualitative design to quantitative tools. In this work, we address how firms can utilize the power of analytics to maximize profits in both their offline and online channels. First, we consider an online setting, in which an advertiser can target ads to the customer in question. The goal of the advertiser is to determine how to target the right audience with their ads. We study this problem as a Multi-Armed Bandit problem with periodic budgets, and develop an Optimistic-Robust Learning algorithm with bounded expected regret. Practically, simulations on synthetic and real-world ad data show that the algorithm reduces regret by at least 10-20% compared to benchmarks. Second, we consider an offline setting, in which a retailer can boost profits through the use of promotion vehicles such as flyers and commercials. The goal of the retailer is to decide how to schedule the right promotion vehicles for their products. We model the problem as a non-linear bipartite matching-type problem, and develop provably-good algorithms: a greedy algorithm and an approximate integer program of polynomial size. From a practical perspective, we test our methods on actual data and show potential profit increases of 2-9%. Third, we explore a supply chain setting, in which a supplier offers vendor funds to a retailer who promotionally prices the product to the customer. Vendor funds are trade deals in which a supplier offers a retailer a short-term discount on a specific product, encouraging the retailer to discount the product. We model the problem as a bilevel optimization model and show that a pass-through constrained vendor fund mitigates forward-buying and coordinates the supply chain on the short term. Finally, we present a pilot study on the impact of promotional pricing on retail profits. We assess the potential impact of our promotion planning tool on historical data from a large retailer. Our results suggest a 9.94% profit improvement for the retailer.

Python Reinforcement Learning

Author : Sudharsan Ravichandiran
ISBN : 9781838640149
Genre : Computers
File Size : 45.69 MB
Format : PDF, Docs
Download : 791
Read : 675

Apply modern reinforcement learning and deep reinforcement learning methods using Python and its powerful libraries Key Features Your entry point into the world of artificial intelligence using the power of Python An example-rich guide to master various RL and DRL algorithms Explore the power of modern Python libraries to gain confidence in building self-trained applications Book Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani What you will learn Train an agent to walk using OpenAI Gym and TensorFlow Solve multi-armed-bandit problems using various algorithms Build intelligent agents using the DRQN algorithm to play the Doom game Teach your agent to play Connect4 using AlphaGo Zero Defeat Atari arcade games using the value iteration method Discover how to deal with discrete and continuous action spaces in various environments Who this book is for If you’re an ML/DL enthusiast interested in AI and want to explore RL and deep RL from scratch, this Learning Path is for you. Prior knowledge of linear algebra is expected.
Category: Computers

Handbook Of Marketing Decision Models

Author : Berend Wierenga
ISBN : 9783319569413
Genre : Business & Economics
File Size : 27.11 MB
Format : PDF
Download : 428
Read : 571

The Second Edition of this book presents the state of the art in this important field. Marketing decision models constitute a core component of the marketing discipline and the area is changing rapidly, not only due to fundamental advances in methodology and model building, but also because of the recent developments in information technology, the Internet and social media. This Handbook contains eighteen chapters that cover the most recent developments of marketing decision models in different domains of marketing. Compared to the previous edition, thirteen chapters are entirely new, while the remaining chapters represent complete updates and extensions of the previous edition. This new edition of the Handbook has chapters on models for substantive marketing problems, such as customer relationship management, customer loyalty management, website design, Internet advertising, social media, and social networks. In addition, it contains chapters on recent methodological developments that are gaining popularity in the area of marketing decision models, such as structural modeling, learning dynamics, choice modeling, eye-tracking and measurement. The introductory chapter discusses the main developments of the last decade and discusses perspectives for future developments.
Category: Business & Economics