ANALYTIC NUMBER THEORY APPROXIMATION THEORY AND SPECIAL FUNCTIONS

Download Analytic Number Theory Approximation Theory And Special Functions ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to ANALYTIC NUMBER THEORY APPROXIMATION THEORY AND SPECIAL FUNCTIONS book pdf for free now.

Author : Gradimir V. Milovanović
ISBN : 9781493902583
Genre : Mathematics
File Size : 36.97 MB
Format : PDF, Docs
Download : 226
Read : 1183

This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.

Author : Bruce C. Berndt
ISBN : 9780821812006
Genre : Mathematics
File Size : 29.88 MB
Format : PDF, ePub
Download : 320
Read : 679

This volume presents the contributions from the international conference held at the University of Missouri at Columbia, marking Professor Lange's 70th birthday and his retirement from the university. The principal purpose of the conference was to focus on continued fractions as a common interdisciplinary theme bridging gaps between a large number of fields - from pure mathematics to mathematical physics and approximation theory. Evident in this work is the widespread influence of continued fractions in a broad range of areas of mathematics and physics, including number theory, elliptic functions, Pade approximations, orthogonal polynomials, moment problems, frequency analysis, and regularity properties of evolution equations. Different areas of current research are represented. The lectures at the conference and the contributions to this volume reflect the wide range of applicability of continued fractions in mathematics and the applied sciences.

Author : Themistocles M. Rassias
ISBN : 9783319312811
Genre : Mathematics
File Size : 68.32 MB
Format : PDF, ePub
Download : 919
Read : 301

Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

Author : Hans J. Haubold
ISBN : 9783038426653
Genre :
File Size : 46.76 MB
Format : PDF, Docs
Download : 834
Read : 1099

This book is a printed edition of the Special Issue "Special Functions: Fractional Calculus and the Pathway for Entropy Dedicated to Professor Dr. A.M. Mathai on the occasion of his 80th Birthday" that was published in Axioms

This volume contains talks given at a joint meeting of three communities working in the fields of difference equations, special functions and applications (ISDE, OPSFA, and SIDE). The articles reflect the diversity of the topics in the meeting but have difference equations as common thread. Articles cover topics in difference equations, discrete dynamical systems, special functions, orthogonal polynomials, symmetries, and integrable difference equations.

Author : Igor Shparlinski
ISBN : 3764366540
Genre : Computers
File Size : 72.71 MB
Format : PDF, Kindle
Download : 754
Read : 804

The book introduces new ways of using analytic number theory in cryptography and related areas, such as complexity theory and pseudorandom number generation. Cryptographers and number theorists will find this book useful. The former can learn about new number theoretic techniques which have proved to be invaluable cryptographic tools, the latter about new challenging areas of applications of their skills.

Author : Bateman Paul Trevier
ISBN : 9789814365567
Genre : Mathematics
File Size : 87.55 MB
Format : PDF
Download : 372
Read : 199

This valuable book focuses on a collection of powerful methods of analysis that yield deep number-theoretical estimates. Particular attention is given to counting functions of prime numbers and multiplicative arithmetic functions. Both real variable (”elementary”) and complex variable (”analytic”) methods are employed. The reader is assumed to have knowledge of elementary number theory (abstract algebra will also do) and real and complex analysis. Specialized analytic techniques, including transform and Tauberian methods, are developed as needed.Comments and corrigenda for the book are found at www.math.uiuc.edu/~diamond/.

Author : Carlo Viola
ISBN : 9783319413457
Genre : Mathematics
File Size : 63.58 MB
Format : PDF, ePub
Download : 161
Read : 981

The subjects treated in this book have been especially chosen to represent a bridge connecting the content of a first course on the elementary theory of analytic functions with a rigorous treatment of some of the most important special functions: the Euler gamma function, the Gauss hypergeometric function, and the Kummer confluent hypergeometric function. Such special functions are indispensable tools in "higher calculus" and are frequently encountered in almost all branches of pure and applied mathematics. The only knowledge assumed on the part of the reader is an understanding of basic concepts to the level of an elementary course covering the residue theorem, Cauchy's integral formula, the Taylor and Laurent series expansions, poles and essential singularities, branch points, etc. The book addresses the needs of advanced undergraduate and graduate students in mathematics or physics.