Download An Introduction To Chaotic Dynamical Systems ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to An Introduction To Chaotic Dynamical Systems book pdf for free now.

Author : Robert Devaney
ISBN : 9780429981937
Genre : Science
File Size : 86.55 MB
Format : PDF, Docs
Download : 441
Read : 356

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

Author : Robert L. Devaney
ISBN : 9780429983115
Genre : Mathematics
File Size : 74.45 MB
Format : PDF, Mobi
Download : 977
Read : 616

A First Course in Chaotic Dynamical Systems: Theory and Experiment is the first book to introduce modern topics in dynamical systems at the undergraduate level. Accessible to readers with only a background in calculus, the book integrates both theory and computer experiments into its coverage of contemporary ideas in dynamics. It is designed as a gradual introduction to the basic mathematical ideas behind such topics as chaos, fractals, Newton's method, symbolic dynamics, the Julia set, and the Mandelbrot set, and includes biographies of some of the leading researchers in the field of dynamical systems. Mathematical and computer experiments are integrated throughout the text to help illustrate the meaning of the theorems presented. Chaotic Dynamical Systems Software, Labs 1-6 is a supplementary labouratory software package, available separately, that allows a more intuitive understanding of the mathematics behind dynamical systems theory. Combined with A First Course in Chaotic Dynamical Systems , it leads to a rich understanding of this emerging field.

BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

Author : Robert L. Devaney
ISBN : OCLC:19223963
Genre : Chaotic behavior in systems
File Size : 77.78 MB
Format : PDF, ePub, Mobi
Download : 526
Read : 314

Author : Edward Ott
ISBN : 0521010845
Genre : Mathematics
File Size : 47.26 MB
Format : PDF, ePub
Download : 488
Read : 883

Over the past two decades scientists, mathematicians, and engineers have come to understand that a large variety of systems exhibit complicated evolution with time. This complicated behavior is known as chaos. In the new edition of this classic textbook Edward Ott has added much new material and has significantly increased the number of homework problems. The most important change is the addition of a completely new chapter on control and synchronization of chaos. Other changes include new material on riddled basins of attraction, phase locking of globally coupled oscillators, fractal aspects of fluid advection by Lagrangian chaotic flows, magnetic dynamos, and strange nonchaotic attractors. This new edition will be of interest to advanced undergraduates and graduate students in science, engineering, and mathematics taking courses in chaotic dynamics, as well as to researchers in the subject.

Author : Mario Martelli
ISBN : 9781118031124
Genre : Mathematics
File Size : 82.65 MB
Format : PDF
Download : 981
Read : 926

A timely, accessible introduction to the mathematics ofchaos. The past three decades have seen dramatic developments in thetheory of dynamical systems, particularly regarding the explorationof chaotic behavior. Complex patterns of even simple processesarising in biology, chemistry, physics, engineering, economics, anda host of other disciplines have been investigated, explained, andutilized. Introduction to Discrete Dynamical Systems and Chaos makes theseexciting and important ideas accessible to students and scientistsby assuming, as a background, only the standard undergraduatetraining in calculus and linear algebra. Chaos is introduced at theoutset and is then incorporated as an integral part of the theoryof discrete dynamical systems in one or more dimensions. Both phasespace and parameter space analysis are developed with ampleexercises, more than 100 figures, and important practical examplessuch as the dynamics of atmospheric changes and neuralnetworks. An appendix provides readers with clear guidelines on how to useMathematica to explore discrete dynamical systems numerically.Selected programs can also be downloaded from a Wiley ftp site(address in preface). Another appendix lists possible projects thatcan be assigned for classroom investigation. Based on the author's1993 book, but boasting at least 60% new, revised, and updatedmaterial, the present Introduction to Discrete Dynamical Systemsand Chaos is a unique and extremely useful resource for allscientists interested in this active and intensely studiedfield. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available upon request from the Wileyeditorial department.

The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1–8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9–13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.

Author : Ralph Abraham
ISBN : 9781461219361
Genre : Mathematics
File Size : 85.9 MB
Format : PDF, ePub, Mobi
Download : 626
Read : 1304

The materials in the book and on the accompanying disc are not solely developed with only the researcher and professional in mind, but also with consideration for the student: most of this material has been class-tested by the authors. The book is packed with some 100 computer graphics to illustrate the material, and the CD-ROM contains full-colour animations tied directly to the subject matter of the book itself. The cross-platform CD also contains the program ENDO, which enables users to create their own 2-D imagery with X-Windows. Maple scripts are provided to allow readers to work directly with the code from which the graphics in the book were taken.

Author : Rex Clark Robinson
ISBN : 9780821891353
Genre : Mathematics
File Size : 41.82 MB
Format : PDF, Kindle
Download : 998
Read : 1089

This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.

Author : Robert Devaney
ISBN : 9780429970856
Genre : Mathematics
File Size : 42.50 MB
Format : PDF, Mobi
Download : 990
Read : 652

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

Author : Morris W. Hirsch
ISBN : 9780123497031
Genre : Mathematics
File Size : 37.42 MB
Format : PDF
Download : 459
Read : 1203

This text is about the dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. It is an update of one of Academic Press's most successful mathematics texts ever published, which has become the standard textbook for graduate courses in this area. The authors are tops in the field of advanced mathematics. Steve Smale is a Field's Medalist, which equates to being a Nobel prize winner in mathematics. Bob Devaney has authored several leading books in this subject area. Linear algebra prerequisites toned down from first edition Inclusion of analysis of examples of chaotic systems, including Lorenz, Rosssler, and Shilnikov systems Bifurcation theory included throughout.

Author : Christian Beck
ISBN : 0521484510
Genre : Mathematics
File Size : 25.87 MB
Format : PDF
Download : 493
Read : 260

This book deals with the various thermodynamic concepts used for the analysis of nonlinear dynamical systems. The most important invariants used to characterize chaotic systems are introduced in a way that stresses the interconnections with thermodynamics and statistical mechanics. Among the subjects treated are probabilistic aspects of chaotic dynamics, the symbolic dynamics technique, information measures, the maximum entropy principle, general thermodynamic relations, spin systems, fractals and multifractals, expansion rate and information loss, the topological pressure, transfer operator methods, repellers and escape. The more advanced chapters deal with the thermodynamic formalism for expanding maps, thermodynamic analysis of chaotic systems with several intensive parameters, and phase transitions in nonlinear dynamics.

Author : J. Froyland
ISBN : 113845818X
Genre : Chaotic behavior in systems
File Size : 50.23 MB
Format : PDF
Download : 889
Read : 887

This book provides an introduction to the theory of chaotic systems and demonstrates how chaos and coherence are interwoven in some of the models exhibiting deterministic chaos. It is based on the lecture notes for a short course in dynamical systems theory given at the University of Oslo.

Author : Morris W. Hirsch
ISBN : 9780123820112
Genre : Mathematics
File Size : 25.99 MB
Format : PDF, ePub, Mobi
Download : 962
Read : 242

Hirsch, Devaney, and Smale’s classic Differential Equations, Dynamical Systems, and an Introduction to Chaos has been used by professors as the primary text for undergraduate and graduate level courses covering differential equations. It provides a theoretical approach to dynamical systems and chaos written for a diverse student population among the fields of mathematics, science, and engineering. Prominent experts provide everything students need to know about dynamical systems as students seek to develop sufficient mathematical skills to analyze the types of differential equations that arise in their area of study. The authors provide rigorous exercises and examples clearly and easily by slowly introducing linear systems of differential equations. Calculus is required as specialized advanced topics not usually found in elementary differential equations courses are included, such as exploring the world of discrete dynamical systems and describing chaotic systems. Classic text by three of the world’s most prominent mathematicians Continues the tradition of expository excellence Contains updated material and expanded applications for use in applied studies

Author : Ya. B. Pesin
ISBN : 9780821848890
Genre : Mathematics
File Size : 27.50 MB
Format : PDF, Kindle
Download : 99
Read : 269

Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.

Author : Valentin Senderovich Afraĭmovich
ISBN : 0821888315
Genre : Mathematics
File Size : 59.17 MB
Format : PDF
Download : 400
Read : 705

This book is devoted to chaotic nonlinear dynamics. It presents a consistent, up-to-date introduction to the field of strange attractors, hyperbolic repellers, and nonlocal bifurcations. The authors keep the highest possible level of ''physical'' intuition while staying mathematically rigorous. In addition, they explain a variety of important nonstandard algorithms and problems involving the computation of chaotic dynamics. The book will help readers who are not familiar withnonlinear dynamics to understand and enjoy sophisticated modern monographs on dynamical systems and chaos. Intended for courses in either mathematics, physics, or engineering, prerequisites are calculus, differential equations, and functional analysis.