Download Advances In Differential Equations ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to Advances In Differential Equations book pdf for free now.

Author : H-H Dai
ISBN : 9781000724547
Genre : Mathematics
File Size : 29.28 MB
Format : PDF, Kindle
Download : 693
Read : 638

The First Pan-China Conference on Differential Equations was held in Kunming, China in June of 1997. Researchers from around the world attended-including representatives from the US, Canada, and the Netherlands-but the majority of the speakers hailed from China and Hong Kong. This volume contains the plenary lectures and invited talks presented at that conference, and provides an excellent view of the research on differential equations being carried out in China. Most of the subjects addressed arose from actual applications and cover ordinary and partial differential equations. Topics include:

Author :
ISBN : 3039368702
Genre : Mathematics
File Size : 21.78 MB
Format : PDF
Download : 310
Read : 873

It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete analogues of differential equations. These types of equations started to be used intensively during the last several years for their multiple applications, particularly in complex chaotic behavior. A certain class of differential and related difference equations is represented by their respective fractional forms, which have been utilized to better describe non-local phenomena appearing in all branches of science and engineering. The purpose of this book is to present some common results given by mathematicians together with physicists, engineers, as well as other scientists, for whom differential and difference equations are valuable research tools. The reported results can be used by researchers and academics working in both pure and applied differential equations.

Author : Juan Luis García Guirao
ISBN : 9783030003418
Genre : Mathematics
File Size : 84.68 MB
Format : PDF, Kindle
Download : 516
Read : 1076

This work gathers a selection of outstanding papers presented at the 25th Conference on Differential Equations and Applications / 15th Conference on Applied Mathematics, held in Cartagena, Spain, in June 2017. It supports further research into both ordinary and partial differential equations, numerical analysis, dynamical systems, control and optimization, trending topics in numerical linear algebra, and the applications of mathematics to industry. The book includes 14 peer-reviewed contributions and mainly addresses researchers interested in the applications of mathematics, especially in science and engineering. It will also greatly benefit PhD students in applied mathematics, engineering and physics.

Author : International Conference on Differential Equations and Mathematical Physics (10th 2005
ISBN : 9780821838402
Genre : Mathematics
File Size : 44.34 MB
Format : PDF, ePub
Download : 252
Read : 705

This book brings together both new material and recent surveys on some topics in differential equations that are either directly relevant to, or closely associated with, mathematical physics. Its topics include asymptotic formulas for the ground-state energy of fermionic gas, renormalization ideas in quantum field theory from perturbations of the free Hamiltonian on the circle, $J$-selfadjoint Dirac operators, spectral theory of Schrodinger operators, inverse problems, isoperimetric inequalities in quantum mechanics, Hardy inequalities, and non-adiabatic transitions. Excellent survey articles on Dirichlet-Neumann inverse problems on manifolds (by Uhlmann), numerical investigations associated with Laplacian eigenvalues on planar regions (by Trefethen), Snell's law and propagation of singularities in the wave equation (by Vasy), and random operators on tree graphs (by Aizenmann) make this book interesting and valuable for graduate students, young mathematicians, and physicists alike.

Author : Saber N. Elaydi
ISBN : 9056995219
Genre : Mathematics
File Size : 41.43 MB
Format : PDF, ePub, Docs
Download : 808
Read : 1083

The recent surge in research activity in difference equations and applications has been driven by the wide applicability of discrete models to such diverse fields as biology, engineering, physics, economics, chemistry, and psychology. The 68 papers that make up this book were presented by an international group of experts at the Second International Conference on Difference Equations, held in Veszprém, Hungary, in August, 1995. Featuring contributions on such topics as orthogonal polynomials, control theory, asymptotic behavior of solutions, stability theory, special functions, numerical analysis, oscillation theory, models of vibrating string, models of chemical reactions, discrete competition systems, the Liouville-Green (WKB) method, and chaotic phenomena, this volume offers a comprehensive review of the state of the art in this exciting field.

Author : Yulia E. Karpeshina
ISBN : 9780821832967
Genre : Science
File Size : 24.97 MB
Format : PDF, Mobi
Download : 637
Read : 755

This volume presents the proceedings of the 9th International Conference on Differential Equations and Mathematical Physics. It contains 29 research and survey papers contributed by conference participants. The conference provided researchers a forum to present and discuss their recent results in a broad range of areas encompassing the theory of differential equations and their applications in mathematical physics.Papers in this volume represent some of the most interesting results and the major areas of research that were covered, including spectral theory with applications to non-relativistic and relativistic quantum mechanics, including time-dependent and random potential, resonances, many body systems, pseudo differential operators and quantum dynamics, inverse spectral and scattering problems, the theory of linear and nonlinear partial differential equations with applications in fluid dynamics, conservation laws and numerical simulations, as well as equilibrium and non equilibrium statistical mechanics. The volume is intended for graduate students and researchers interested in mathematical physics.

Recent Advances in Differential Equations contains the proceedings of a meeting held at the International Center for Theoretical Physics in Trieste, Italy, on August 24-28, 1978 under the auspices of the U.S. Army Research Office. The papers review the status of research in the field of differential equations (ordinary, partial, and functional). Both theoretical aspects (differential operators, periodic solutions, stability and bifurcation, asymptotic behavior of solutions, etc.) and problems arising from applications (reaction-diffusion equations, control problems, heat flow, etc.) are discussed. Comprised of 33 chapters, this book first examines non-cooperative trajectories of n-person dynamical games and stable non-cooperative equilibria, followed by a discussion on the determination and application of Vekua resolvents. The reader is then introduced to generalized Hopf bifurcation; some Cauchy problems arising in computational methods; and boundary value problems for pairs of ordinary differential operators. Subsequent chapters focus on degenerate evolution equations and singular optimal control; stability of neutral functional differential equations; local exact controllability of nonlinear evolution equations; and turbulence and higher order bifurcations. This monograph will be of interest to students and practitioners in the field of mathematics.

Author : Constantin Corduneanu
ISBN : 9781119189473
Genre : Mathematics
File Size : 81.10 MB
Format : PDF, ePub, Mobi
Download : 455
Read : 276

Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.

Author : Fernando Casas
ISBN : 9783319069531
Genre : Mathematics
File Size : 78.69 MB
Format : PDF, ePub, Mobi
Download : 416
Read : 704

The book contains a selection of contributions given at the 23th Congress on Differential Equations and Applications (CEDYA) / 13th Congress of Applied Mathematics (CMA) that took place at Castellon, Spain, in 2013. CEDYA is renowned as the congress of the Spanish Society of Applied Mathematics (SEMA) and constitutes the main forum and meeting point for applied mathematicians in Spain. The papers included in this book have been selected after a thorough refereeing process and provide a good summary of the recent activity developed by different groups working mainly in Spain on applications of mathematics to several fields of science and technology. The purpose is to provide a useful reference of academic and industrial researchers working in the area of numerical analysis and its applications.

Author : Ferenc Hartung
ISBN : 9783319082516
Genre : Mathematics
File Size : 66.20 MB
Format : PDF, Docs
Download : 180
Read : 439

Delay differential and difference equations serve as models for a range of processes in biology, physics, engineering and control theory. In this volume, the participants of the International Conference on Delay Differential and Difference Equations and Applications, Balatonfüred, Hungary, July 15-19, 2013 present recent research in this quickly-evolving field. The papers relate to the existence, asymptotic and oscillatory properties of the solutions; stability theory; numerical approximations; and applications to real world phenomena using deterministic and stochastic discrete and continuous dynamical systems.

Author : Saber Elaydi
ISBN : 981134874X
Genre : Mathematics
File Size : 66.27 MB
Format : PDF
Download : 973
Read : 469

This volume contains the proceedings of the 22nd International Conference on Difference Equations and Applications, held at Osaka Prefecture University, Osaka, Japan, in July 2016. The conference brought together both experts and novices in the theory and applications of difference equations and discrete dynamical systems. The volume features papers in difference equations and discrete dynamical systems with applications to mathematical sciences and, in particular, mathematical biology and economics. This book will appeal to researchers, scientists, and educators who work in the fields of difference equations, discrete dynamical systems, and their applications.

Author : Vladimir Georgiev
ISBN : 9783030582159
Genre : Mathematics
File Size : 45.29 MB
Format : PDF
Download : 943
Read : 1148

This book originates from the session "Harmonic Analysis and Partial Differential Equations" held at the 12th ISAAC Congress in Aveiro, and provides a quick overview over recent advances in partial differential equations with a particular focus on the interplay between tools from harmonic analysis, functional inequalities and variational characterisations of solutions to particular non-linear PDEs. It can serve as a useful source of information to mathematicians, scientists and engineers. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area.

Delay Differential Equations: Recent Advances and New Directions cohesively presents contributions from leading experts on the theory and applications of functional and delay differential equations (DDEs). Students and researchers will benefit from a unique focus on theory, symbolic, and numerical methods, which illustrate how the concepts described can be applied to practical systems ranging from automotive engines to remote control over the Internet. Comprehensive coverage of recent advances, analytical contributions, computational techniques, and illustrative examples of the application of current results drawn from biology, physics, mechanics, and control theory. Students, engineers and researchers from various scientific fields will find Delay Differential Equations: Recent Advances and New Directions a valuable reference.

Author : Saber N. Elaydi
ISBN : 0849306639
Genre : Mathematics
File Size : 54.90 MB
Format : PDF, Kindle
Download : 710
Read : 1211

Reports and expands upon topics discussed at the International Conference on [title] held in Colorado Springs, Colo., June 1989. Presents recent advances in control, oscillation, and stability theories, spanning a variety of subfields and covering evolution equations, differential inclusions, functi

In the past two decades, there has been great progress in the theory of nonlinear partial differential equations. This book describes the progress, focusing on interesting topics in gas dynamics, fluid dynamics, elastodynamics etc. It contains ten articles, each of which discusses a very recent result obtained by the author. Some of these articles review related results.

Author : M. A. Herrero
ISBN : UOM:39015049316501
Genre : Differential equations, Partial
File Size : 29.68 MB
Format : PDF, ePub
Download : 817
Read : 199

This is an up-to-date survey of current research with partial differential equations. Topics discussed include the evolution of hypersurfaces by mean curvature flow, nonlinear wave equations including harmonic maps, and blow-up mechanisms for semilinear parabolic equations.