Download A Course On Partial Differential Equations ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to A Course On Partial Differential Equations book pdf for free now.

Author : J Robert Buchanan
ISBN : 9789813226456
Genre : Mathematics
File Size : 42.88 MB
Format : PDF, Kindle
Download : 173
Read : 229

Resources for instructors who adopt this textbook:Lecture SlidesInstructors' Manual (complete solutions and supporting work)Students' Manual (final answers to computational exercises) Kindly send your requests to [email protected] This textbook gives an introduction to Partial Differential Equations (PDEs), for any reader wishing to learn and understand the basic concepts, theory, and solution techniques of elementary PDEs. The only prerequisite is an undergraduate course in Ordinary Differential Equations. This work contains a comprehensive treatment of the standard second-order linear PDEs, the heat equation, wave equation, and Laplace's equation. First-order and some common nonlinear PDEs arising in the physical and life sciences, with their solutions, are also covered. This textbook includes an introduction to Fourier series and their properties, an introduction to regular Sturm–Liouville boundary value problems, special functions of mathematical physics, a treatment of nonhomogeneous equations and boundary conditions using methods such as Duhamel's principle, and an introduction to the finite difference technique for the numerical approximation of solutions. All results have been rigorously justified or precise references to justifications in more advanced sources have been cited. Appendices providing a background in complex analysis and linear algebra are also included for readers with limited prior exposure to those subjects. The textbook includes material from which instructors could create a one- or two-semester course in PDEs. Students may also study this material in preparation for a graduate school (masters or doctoral) course in PDEs. The lecture slides, instructors' manual and students' manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected]

Author : Qing Han
ISBN : 9780821852552
Genre : Mathematics
File Size : 49.18 MB
Format : PDF, ePub, Mobi
Download : 636
Read : 436

This is a textbook for an introductory graduate course on partial differential equations. Han focuses on linear equations of first and second order. An important feature of his treatment is that the majority of the techniques are applicable more generally. In particular, Han emphasizes a priori estimates throughout the text, even for those equations that can be solved explicitly. Such estimates are indispensable tools for proving the existence and uniqueness of solutions to PDEs, being especially important for nonlinear equations. The estimates are also crucial to establishing properties of the solutions, such as the continuous dependence on parameters. Han's book is suitable for students interested in the mathematical theory of partial differential equations, either as an overview of the subject or as an introduction leading to further study.

Author : Walter Craig
ISBN : 9781470442927
Genre : Differential equations, Partial
File Size : 44.60 MB
Format : PDF, Mobi
Download : 549
Read : 846

Does entropy really increase no matter what we do? Can light pass through a Big Bang? What is certain about the Heisenberg uncertainty principle? Many laws of physics are formulated in terms of differential equations, and the questions above are about the nature of their solutions. This book puts together the three main aspects of the topic of partial differential equations, namely theory, phenomenology, and applications, from a contemporary point of view. In addition to the three principal examples of the wave equation, the heat equation, and Laplace's equation, the book has chapters on dispersion and the Schrödinger equation, nonlinear hyperbolic conservation laws, and shock waves. The book covers material for an introductory course that is aimed at beginning graduate or advanced undergraduate level students. Readers should be conversant with multivariate calculus and linear algebra. They are also expected to have taken an introductory level course in analysis. Each chapter includes a comprehensive set of exercises, and most chapters have additional projects, which are intended to give students opportunities for more in-depth and open-ended study of solutions of partial differential equations and their properties.

Author : T. Amaranath
ISBN : 9781449657543
Genre : Mathematics
File Size : 90.39 MB
Format : PDF, Mobi
Download : 737
Read : 177

An Elementary Course in Partial Differential Equations is a concise, 1-term introduction to partial differential equations for the upper-level undergraduate/graduate course in Mathematics, Engineering and Science. Divided into two accessible parts, the first half of the text presents first-order differential equations while the later half is devoted to the study of second-order partial differential equations. Numerous applications and exercises throughout allow students to test themselves on key material discussed.

Author : Eric Sonnendrücker
ISBN : 9783110200072
Genre : Mathematics
File Size : 78.5 MB
Format : PDF, Kindle
Download : 814
Read : 287

Modeling, in particular with partial differential equations, plays an ever growing role in the applied sciences. Hence its mathematical understanding is an important issue for today's research. This book provides an introduction to three different topics in partial differential equations stemming from the applications for students and researchers with a basic background in this subject. Michel Chipot investigates equilibrium positions of several disks rolling on a wire. In particular, he discusses existence and uniqueness of, and the exact position for an equilibrium. Josselin Garnier considers problems arising from acoustics and geophysics where waves propagate in complicated media, the properties of which can only be described statistically. He shows in particular that if the different scales present in the problem can be separated, there exists a deterministic result. Otared Kavian is interested in so-called inverse problems, where one or several parameters of a partial differential equation need to be determined using, for example, measurements on the boundary of the domain. The question that arises naturally is what information is necessary to determine the unknown parameters. This lecture answers this question in different settings.

Author : Michael K. Keane
ISBN : UCSC:32106016867183
Genre : Mathematics
File Size : 41.72 MB
Format : PDF, Mobi
Download : 957
Read : 631

This extremely readable book illustrates how mathematics applies directly to different fields of study. Focuses on problems that require physical to mathematical translations, by showing readers how equations have actual meaning in the real world. Covers fourier integrals, and transform methods, classical PDE problems, the Sturm-Liouville Eigenvalue problem, and much more. For readers interested in partial differential equations.

This book is based on a course I have given five times at the University of Michigan, beginning in 1973. The aim is to present an introduction to a sampling of ideas, phenomena, and methods from the subject of partial differential equations that can be presented in one semester and requires no previous knowledge of differential equations. The problems, with hints and discussion, form an important and integral part of the course. In our department, students with a variety of specialties-notably differen tial geometry, numerical analysis, mathematical physics, complex analysis, physics, and partial differential equations-have a need for such a course. The goal of a one-term course forces the omission of many topics. Everyone, including me, can find fault with the selections that I have made. One of the things that makes partial differential equations difficult to learn is that it uses a wide variety of tools. In a short course, there is no time for the leisurely development of background material. Consequently, I suppose that the reader is trained in advanced calculus, real analysis, the rudiments of complex analysis, and the language offunctional analysis. Such a background is not unusual for the students mentioned above. Students missing one of the "essentials" can usually catch up simultaneously. A more difficult problem is what to do about the Theory of Distributions.

Author : H. F. Weinberger
ISBN : 9780486132044
Genre : Mathematics
File Size : 80.11 MB
Format : PDF, ePub, Mobi
Download : 553
Read : 1223

Suitable for advanced undergraduate and graduate students, this text presents the general properties of partial differential equations, including the elementary theory of complex variables. Solutions. 1965 edition.

Author : J. David Logan
ISBN : 9781468405330
Genre : Mathematics
File Size : 45.54 MB
Format : PDF, Docs
Download : 149
Read : 883

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.

Author : Peter J. Olver
ISBN : 9783319020990
Genre : Mathematics
File Size : 28.78 MB
Format : PDF, ePub, Docs
Download : 568
Read : 1026

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Author : T. Hillen
ISBN : 9781525550249
Genre : Mathematics
File Size : 41.37 MB
Format : PDF
Download : 935
Read : 750

Provides more than 150 fully solved problems for linear partial differential equations and boundary value problems. Partial Differential Equations: Theory and Completely Solved Problems offers a modern introduction into the theory and applications of linear partial differential equations (PDEs). It is the material for a typical third year university course in PDEs. The material of this textbook has been extensively class tested over a period of 20 years in about 60 separate classes. The book is divided into two parts. Part I contains the Theory part and covers topics such as a classification of second order PDEs, physical and biological derivations of the heat, wave and Laplace equations, separation of variables, Fourier series, D’Alembert’s principle, Sturm-Liouville theory, special functions, Fourier transforms and the method of characteristics. Part II contains more than 150 fully solved problems, which are ranked according to their difficulty. The last two chapters include sample Midterm and Final exams for this course with full solutions.

Author : James R. Kirkwood
ISBN : 9780123869111
Genre : Mathematics
File Size : 68.58 MB
Format : PDF, Kindle
Download : 133
Read : 1196

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Author : Lawrence C. Evans
ISBN : 9780821849743
Genre : Mathematics
File Size : 58.59 MB
Format : PDF
Download : 702
Read : 1246

This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. ... Evans' book is evidence of his mastering of the field and the clarity of presentation. --Luis Caffarelli, University of Texas It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ... Every graduate student in analysis should read it. --David Jerison, MIT I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ... I am very happy with the preparation it provides my students. --Carlos Kenig, University of Chicago Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ... An outstanding reference for many aspects of the field. --Rafe Mazzeo, Stanford University

Author : Maxim Braverman
ISBN : 9780821836408
Genre : Education
File Size : 44.3 MB
Format : PDF
Download : 182
Read : 1189

This book is based on notes from a beginning graduate course on partial differential equations. Prerequisites for using the book are a solid undergraduate course in real analysis. There are more than 100 exercises in the book. Some of them are just exercises, whereas others, even though they do require new ideas to solve them, provide additional important information about the subject.

This two-volume work focuses on partial differential equations (PDEs) with important applications in mechanical and civil engineering, emphasizing mathematical correctness, analysis, and verification of solutions. The presentation involves a discussion of relevant PDE applications, its derivation, and the formulation of consistent boundary conditions.

Author : David Colton
ISBN : 9780486138435
Genre : Mathematics
File Size : 64.39 MB
Format : PDF, ePub, Mobi
Download : 888
Read : 861

This text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Features coverage of integral equations and basic scattering theory. Includes exercises, many with answers. 1988 edition.

This book provides a basic introductory course in partial differential equations, in which theory and applications are interrelated and developed side by side. Emphasis is on proofs, which are not only mathematically rigorous, but also constructive, where the structure and properties of the solution are investigated in detail. The authors feel that it is no longer necessary to follow the tradition of introducing the subject by deriving various partial differential equations of continuum mechanics and theoretical physics. Therefore, the subject has been introduced by mathematical analysis of the simplest, yet one of the most useful (from the point of view of applications), class of partial differential equations, namely the equations of first order, for which existence, uniqueness and stability of the solution of the relevant problem (Cauchy problem) is easy to discuss. Throughout the book, attempt has been made to introduce the important ideas from relatively simple cases, some times by referring to physical processes, and then extending them to more general systems.

Author : Nail H. Ibragimov
ISBN : 9789814291958
Genre : Mathematics
File Size : 74.19 MB
Format : PDF, Mobi
Download : 239
Read : 1028

A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author?s own theoretical developments. The book ? which aims to present new mathematical curricula based on symmetry and invariance principles ? is tailored to develop analytic skills and ?working knowledge? in both classical and Lie?s methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author?s extensive teaching experience at Novosibirsk and Moscow universities in Russia, Collge de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics.