A Classical Introduction To Cryptography Exercise Book

Download A Classical Introduction To Cryptography Exercise Book ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to A Classical Introduction To Cryptography Exercise Book book pdf for free now.

Author : Thomas Baigneres
ISBN : 0387279342
Genre : Computers
File Size : 88.35 MB
Format : PDF, ePub
Download : 389
Read : 1089

This companion exercise and solution book to A Classical Introduction to Cryptography: Applications for Communications Security contains a carefully revised version of teaching material. It was used by the authors or given as examinations to undergraduate and graduate-level students of the Cryptography and Security Lecture at EPFL from 2000 to mid-2005. A Classical Introduction to Cryptography Exercise Book for A Classical Introduction to Cryptography: Applications for Communications Security covers a majority of the subjects that make up today's cryptology, such as symmetric or public-key cryptography, cryptographic protocols, design, cryptanalysis, and implementation of cryptosystems. Exercises do not require a large background in mathematics, since the most important notions are introduced and discussed in many of the exercises. The authors expect the readers to be comfortable with basic facts of discrete probability theory, discrete mathematics, calculus, algebra, as well as computer science. Following the model of A Classical Introduction to Cryptography: Applications for Communications Security, exercises related to the more advanced parts of the textbook are marked with a star.

Author : Thomas Baigneres
ISBN : 9780387288352
Genre : Computers
File Size : 65.56 MB
Format : PDF
Download : 662
Read : 351

TO CRYPTOGRAPHY EXERCISE BOOK Thomas Baignkres EPFL, Switzerland Pascal Junod EPFL, Switzerland Yi Lu EPFL, Switzerland Jean Monnerat EPFL, Switzerland Serge Vaudenay EPFL, Switzerland Springer - Thomas Baignbres Pascal Junod EPFL - I&C - LASEC Lausanne, Switzerland Lausanne, Switzerland Yi Lu Jean Monnerat EPFL - I&C - LASEC EPFL-I&C-LASEC Lausanne, Switzerland Lausanne, Switzerland Serge Vaudenay Lausanne, Switzerland Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. A CLASSICAL INTRODUCTION TO CRYPTOGRAPHY EXERCISE BOOK by Thomas Baignkres, Palcal Junod, Yi Lu, Jean Monnerat and Serge Vaudenay ISBN- 10: 0-387-27934-2 e-ISBN-10: 0-387-28835-X ISBN- 13: 978-0-387-27934-3 e-ISBN- 13: 978-0-387-28835-2 Printed on acid-free paper. O 2006 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America.

A Classical Introduction to Cryptography: Applications for Communications Security introduces fundamentals of information and communication security by providing appropriate mathematical concepts to prove or break the security of cryptographic schemes. This advanced-level textbook covers conventional cryptographic primitives and cryptanalysis of these primitives; basic algebra and number theory for cryptologists; public key cryptography and cryptanalysis of these schemes; and other cryptographic protocols, e.g. secret sharing, zero-knowledge proofs and undeniable signature schemes. A Classical Introduction to Cryptography: Applications for Communications Security is designed for upper-level undergraduate and graduate-level students in computer science. This book is also suitable for researchers and practitioners in industry. A separate exercise/solution booklet is available as well, please go to www.springeronline.com under author: Vaudenay for additional details on how to purchase this booklet.

Author : Hans Delfs
ISBN : 9783540492436
Genre : Computers
File Size : 54.56 MB
Format : PDF, Mobi
Download : 978
Read : 939

The opening section of this book covers key concepts of cryptography, from encryption and digital signatures to cryptographic protocols. Essential techniques are demonstrated in protocols for key exchange, user identification, electronic elections and digital cash. The second part addresses advanced topics, such as the bit security of one-way functions and computationally perfect pseudorandom bit generators. Examples of provably secure encryption and signature schemes and their security proofs are given. Though particular attention is given to the mathematical foundations, no special background in mathematics is presumed. The necessary algebra, number theory and probability theory are included in the appendix. Each chapter closes with a collection of exercises. The second edition presents new material, including a complete description of the AES, an extended section on cryptographic hash functions, a new section on random oracle proofs, and a new section on public-key encryption schemes that are provably secure against adaptively-chosen-ciphertext attacks.

Offers a comprehensive introduction to the fundamental structures and applications of a wide range of contemporary coding operations This book offers a comprehensive introduction to the fundamental structures and applications of a wide range of contemporary coding operations. This text focuses on the ways to structure information so that its transmission will be in the safest, quickest, and most efficient and error-free manner possible. All coding operations are covered in a single framework, with initial chapters addressing early mathematical models and algorithmic developments which led to the structure of code. After discussing the general foundations of code, chapters proceed to cover individual topics such as notions of compression, cryptography, detection, and correction codes. Both classical coding theories and the most cutting-edge models are addressed, along with helpful exercises of varying complexities to enhance comprehension. Explains how to structure coding information so that its transmission is safe, error-free, efficient, and fast Includes a pseudo-code that readers may implement in their preferential programming language Features descriptive diagrams and illustrations, and almost 150 exercises, with corrections, of varying complexity to enhance comprehension Foundations of Coding: Compression, Encryption, Error-Correction is an invaluable resource for understanding the various ways information is structured for its secure and reliable transmission in the 21st-century world.

Author : Joachim von zur Gathen
ISBN : 9783662484258
Genre : Computers
File Size : 69.35 MB
Format : PDF, ePub
Download : 520
Read : 701

This book offers an introduction to cryptology, the science that makes secure communications possible, and addresses its two complementary aspects: cryptography—--the art of making secure building blocks—--and cryptanalysis—--the art of breaking them. The text describes some of the most important systems in detail, including AES, RSA, group-based and lattice-based cryptography, signatures, hash functions, random generation, and more, providing detailed underpinnings for most of them. With regard to cryptanalysis, it presents a number of basic tools such as the differential and linear methods and lattice attacks. This text, based on lecture notes from the author’s many courses on the art of cryptography, consists of two interlinked parts. The first, modern part explains some of the basic systems used today and some attacks on them. However, a text on cryptology would not be complete without describing its rich and fascinating history. As such, the colorfully illustrated historical part interspersed throughout the text highlights selected inventions and episodes, providing a glimpse into the past of cryptology. The first sections of this book can be used as a textbook for an introductory course to computer science or mathematics students. Other sections are suitable for advanced undergraduate or graduate courses. Many exercises are included. The emphasis is on providing reasonably complete explanation of the background for some selected systems.

This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.

Author : Paul B. Garrett
ISBN : STANFORD:36105025071353
Genre : Computers
File Size : 64.70 MB
Format : PDF, Mobi
Download : 601
Read : 826

This unique book explains the basic issues of classical and modern cryptography, and provides a self contained essential mathematical background in number theory, abstract algebra, and probability--with surveys of relevant parts of complexity theory and other things. A user-friendly, down-to-earth tone presents concretely motivated introductions to these topics. More detailed chapter topics include simple ciphers; applying ideas from probability; substitutions, transpositions, permutations; modern symmetric ciphers; the integers; prime numbers; powers and roots modulo primes; powers and roots for composite moduli; weakly multiplicative functions; quadratic symbols, quadratic reciprocity; pseudoprimes; groups; sketches of protocols; rings, fields, polynomials; cyclotomic polynomials, primitive roots; pseudo-random number generators; proofs concerning pseudoprimality; factorization attacks finite fields; and elliptic curves. For personnel in computer security, system administration, and information systems.

Author : Richard A. Mollin
ISBN : 9781420011241
Genre : Mathematics
File Size : 35.88 MB
Format : PDF
Download : 382
Read : 242

Continuing a bestselling tradition, An Introduction to Cryptography, Second Edition provides a solid foundation in cryptographic concepts that features all of the requisite background material on number theory and algorithmic complexity as well as a historical look at the field. With numerous additions and restructured material, this edition presents the ideas behind cryptography and the applications of the subject. The first chapter provides a thorough treatment of the mathematics necessary to understand cryptography, including number theory and complexity, while the second chapter discusses cryptographic fundamentals, such as ciphers, linear feedback shift registers, modes of operation, and attacks. The next several chapters discuss DES, AES, public-key cryptography, primality testing, and various factoring methods, from classical to elliptical curves. The final chapters are comprised of issues pertaining to the Internet, such as pretty good privacy (PGP), protocol layers, firewalls, and cookies, as well as applications, including login and network security, viruses, smart cards, and biometrics. The book concludes with appendices on mathematical data, computer arithmetic, the Rijndael S-Box, knapsack ciphers, the Silver-Pohlig-Hellman algorithm, the SHA-1 algorithm, radix-64 encoding, and quantum cryptography. New to the Second Edition: An introductory chapter that provides more information on mathematical facts and complexity theory Expanded and updated exercises sets, including some routine exercises More information on primality testing and cryptanalysis Accessible and logically organized, An Introduction to Cryptography, Second Edition is the essential book on the fundamentals of cryptography.

Author : Richard E. Klima
ISBN : 9781439872413
Genre : Computers
File Size : 25.78 MB
Format : PDF, Mobi
Download : 370
Read : 643

Easily Accessible to Students with Nontechnical Backgrounds In a clear, nontechnical manner, Cryptology: Classical and Modern with Maplets explains how fundamental mathematical concepts are the bases of cryptographic algorithms. Designed for students with no background in college-level mathematics, the book assumes minimal mathematical prerequisites and incorporates student-friendly Maplets throughout that provide practical examples of the techniques used. Technology Resource By using the Maplets, students can complete complicated tasks with relative ease. They can encrypt, decrypt, and cryptanalyze messages without the burden of understanding programming or computer syntax. The authors explain topics in detail first before introducing one or more Maplets. All Maplet material and exercises are given in separate, clearly labeled sections. Instructors can omit the Maplet sections without any loss of continuity and non-Maplet examples and exercises can be completed with, at most, a simple hand-held calculator. The Maplets are available for download at www.radford.edu/~npsigmon/cryptobook.html. A Gentle, Hands-On Introduction to Cryptology After introducing elementary methods and techniques, the text fully develops the Enigma cipher machine and Navajo code used during World War II, both of which are rarely found in cryptology textbooks. The authors then demonstrate mathematics in cryptology through monoalphabetic, polyalphabetic, and block ciphers. With a focus on public-key cryptography, the book describes RSA ciphers, the Diffie–Hellman key exchange, and ElGamal ciphers. It also explores current U.S. federal cryptographic standards, such as the AES, and explains how to authenticate messages via digital signatures, hash functions, and certificates.

Author : Margaret Cozzens
ISBN : 9780821883211
Genre : Mathematics
File Size : 28.64 MB
Format : PDF
Download : 554
Read : 748

How quickly can you compute the remainder when dividing by 120143? Why would you even want to compute this? And what does this have to do with cryptography? Modern cryptography lies at the intersection of mathematics and computer sciences, involving number theory, algebra, computational complexity, fast algorithms, and even quantum mechanics. Many people think of codes in terms of spies, but in the information age, highly mathematical codes are used every day by almost everyone, whether at the bank ATM, at the grocery checkout, or at the keyboard when you access your email or purchase products online. This book provides a historical and mathematical tour of cryptography, from classical ciphers to quantum cryptography. The authors introduce just enough mathematics to explore modern encryption methods, with nothing more than basic algebra and some elementary number theory being necessary. Complete expositions are given of the classical ciphers and the attacks on them, along with a detailed description of the famous Enigma system. The public-key system RSA is described, including a complete mathematical proof that it works. Numerous related topics are covered, such as efficiencies of algorithms, detecting and correcting errors, primality testing and digital signatures. The topics and exposition are carefully chosen to highlight mathematical thinking and problem solving. Each chapter ends with a collection of problems, ranging from straightforward applications to more challenging problems that introduce advanced topics. Unlike many books in the field, this book is aimed at a general liberal arts student, but without losing mathematical completeness.

Once the privilege of a secret few, cryptography is now taught at universities around the world. Introduction to Cryptography with Open-Source Software illustrates algorithms and cryptosystems using examples and the open-source computer algebra system of Sage. The author, a noted educator in the field, provides a highly practical learning experience by progressing at a gentle pace, keeping mathematics at a manageable level, and including numerous end-of-chapter exercises. Focusing on the cryptosystems themselves rather than the means of breaking them, the book first explores when and how the methods of modern cryptography can be used and misused. It then presents number theory and the algorithms and methods that make up the basis of cryptography today. After a brief review of "classical" cryptography, the book introduces information theory and examines the public-key cryptosystems of RSA and Rabin’s cryptosystem. Other public-key systems studied include the El Gamal cryptosystem, systems based on knapsack problems, and algorithms for creating digital signature schemes. The second half of the text moves on to consider bit-oriented secret-key, or symmetric, systems suitable for encrypting large amounts of data. The author describes block ciphers (including the Data Encryption Standard), cryptographic hash functions, finite fields, the Advanced Encryption Standard, cryptosystems based on elliptical curves, random number generation, and stream ciphers. The book concludes with a look at examples and applications of modern cryptographic systems, such as multi-party computation, zero-knowledge proofs, oblivious transfer, and voting protocols.

Author : Larry J. Gerstein
ISBN : 9780821844656
Genre : Mathematics
File Size : 62.75 MB
Format : PDF, ePub
Download : 947
Read : 943

The arithmetic theory of quadratic forms is a rich branch of number theory that has had important applications to several areas of pure mathematics - particularly group theory and topology - as well as to cryptography and coding theory. This book is a self-contained introduction to quadratic forms that is based on graduate courses the author has taught many times. It leads the reader from foundation material up to topics of current research interest - with special attention to the theory over the integers and over polynomial rings in one variable over a field - and requires only a basic background in linear and abstract algebra as a prerequisite. Whenever possible, concrete constructions are chosen over more abstract arguments. The book includes many exercises and explicit examples, and it is appropriate as a textbook for graduate courses or for independent study. To facilitate further study, a guide to the extensive literature on quadratic forms is provided.

This textbook unifies the concepts of information, codes and cryptography as first considered by Shannon in his seminal papers on communication and secrecy systems. The book has been the basis of a very popular course in Communication Theory which the author has given over several years toundergraduate mathematicians and computer scientists at Oxford. The first five chapters of the book cover the fundamental ideas of information theory, compact encoding of messages, and an introduction to the theory of error-correcting codes. After a discussion of mathematical models of English, there is an introduction to the classical Shannon model ofcryptography. This is followed by a brief survey of those aspects of computational complexity needed for an understanding of modern cryptography, password systems and authentication techniques. Because the aim of the text is to make this exciting branch of modern applied mathematics available to readers with a wide variety of interests and backgrounds, the mathematical prerequisites have been kept to an absolute minimum. In addition to an extensive bibliography there are many exercises(easy) and problems together with solutions.

Information theory lies at the heart of modern technology, underpinning all communications, networking, and data storage systems. This book sets out, for the first time, a complete overview of both classical and quantum information theory. Throughout, the reader is introduced to key results without becoming lost in mathematical details. Opening chapters present the basic concepts and various applications of Shannon's entropy, moving on to the core features of quantum information and quantum computing. Topics such as coding, compression, error-correction, cryptography and channel capacity are covered from classical and quantum viewpoints. Employing an informal yet scientifically accurate approach, Desurvire provides the reader with the knowledge to understand quantum gates and circuits. Highly illustrated, with numerous practical examples and end-of-chapter exercises, this text is ideal for graduate students and researchers in electrical engineering and computer science, and practitioners in the telecommunications industry. Further resources and instructor-only solutions are available at www.cambridge.org/9780521881715.

Author : Juraj Hromkovič
ISBN : 3540140158
Genre : Computers
File Size : 74.73 MB
Format : PDF, ePub, Docs
Download : 510
Read : 465

Juraj Hromkovic takes the reader on an elegant route through the theoretical fundamentals of computer science. The author shows that theoretical computer science is a fascinating discipline, full of spectacular contributions and miracles. The book also presents the development of the computer scientist's way of thinking as well as fundamental concepts such as approximation and randomization in algorithmics, and the basic ideas of cryptography and interconnection network design.