THE SOL GEL HANDBOOK

Download The Sol Gel Handbook ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to THE SOL GEL HANDBOOK book pdf for free now.

The Sol Gel Handbook

Author : David Levy
ISBN : 9783527334865
Genre : Science
File Size : 53.46 MB
Format : PDF, ePub, Mobi
Download : 123
Read : 968

This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas. The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces. The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies. The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.
Category: Science

The Sol Gel Handbook

Author : David Levy
ISBN : 9783527670840
Genre : Technology & Engineering
File Size : 64.63 MB
Format : PDF, Docs
Download : 651
Read : 350

This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas. The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces. The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies. The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.
Category: Technology & Engineering

Handbook Of Sol Gel Science And Technology 1 Sol Gel Processing

Author : Sumio Sakka
ISBN : 1402079664
Genre : Science
File Size : 59.70 MB
Format : PDF, Docs
Download : 576
Read : 695

Since Dr. Disiich of Germany prepared a glass lens by the sol-gel method around 1970, sol-gel science and technology has continued to develop. Since then this field has seen remarkable technical developments as well as a broadening of the applications of sol-gel science and technology. There is a growing need for a comprehensive reference that treats both the fundamentals and the applications, and this is the aim of "Handbook of Sol-Gel Science and Technology."The primary purpose of sol-gel science and technology is to produce materials, active and non-active including optical, electronic, chemical, sensor, bio- and structural materials. This means that sol-gel science and technology is related to all kinds of manufacturing industries. Thus Volume 1, "Sol-Gel Processing," is devoted to general aspects of processing. Newly developed materials such as organic-inorganic hybrids, photonic crystals, ferroelectric coatings, photocatalysts will be covered. Topics in this volume include: Volume 2, "Characterization of Sol-Gel Materials and Products, "highlights the important fact that useful materials are only produced when characterization is tied to processing. Furthermore, characterization is essential to the understanding of nanostructured materials, and sol-gel technology is a most important technology in this new field. Since nanomaterials display their functional property based on their nano- and micro-structure, "characterization" is very important. Topics found in Volume 2 include: Sol-gel technology is a versatile technology, making it possible to produce a wide variety of materials and to provide existing substances with novel properties. This technology was applied to producingnovel materials, for example organic-inorganic hybrids, which are quite difficult to make by other fabricating techniques, and it was also applied to producing materials based on high temperature superconducting oxides. "Applications of Sol-Gel Technology," (Volume 3), will cover applications such as:
Category: Science

Handbook Of Sol Gel Science And Technology 3 Applications Of Sol Gel Technology

Author : Sumio Sakka
ISBN : 1402079680
Genre : Ceramic materials
File Size : 31.49 MB
Format : PDF, ePub, Docs
Download : 678
Read : 425

Since Dr. Disiich of Germany prepared a glass lens by the sol-gel method around 1970, sol-gel science and technology has continued to develop. Since then this field has seen remarkable technical developments as well as a broadening of the applications of sol-gel science and technology. There is a growing need for a comprehensive reference that treats both the fundamentals and the applications, and this is the aim of "Handbook of Sol-Gel Science and Technology."The primary purpose of sol-gel science and technology is to produce materials, active and non-active including optical, electronic, chemical, sensor, bio- and structural materials. This means that sol-gel science and technology is related to all kinds of manufacturing industries. Thus Volume 1, "Sol-Gel Processing," is devoted to general aspects of processing. Newly developed materials such as organic-inorganic hybrids, photonic crystals, ferroelectric coatings, photocatalysts will be covered. Topics in this volume include: Volume 2, "Characterization of Sol-Gel Materials and Products, "highlights the important fact that useful materials are only produced when characterization is tied to processing. Furthermore, characterization is essential to the understanding of nanostructured materials, and sol-gel technology is a most important technology in this new field. Since nanomaterials display their functional property based on their nano- and micro-structure, "characterization" is very important. Topics found in Volume 2 include: Sol-gel technology is a versatile technology, making it possible to produce a wide variety of materials and to provide existing substances with novel properties. This technology was applied to producingnovel materials, for example organic-inorganic hybrids, which are quite difficult to make by other fabricating techniques, and it was also applied to producing materials based on high temperature superconducting oxides. "Applications of Sol-Gel Technology," (Volume 3), will cover applications such as:
Category: Ceramic materials

Handbook Of Advanced Ceramics

Author : Sumio Sakka
ISBN : 9780128057483
Genre : Technology & Engineering
File Size : 45.17 MB
Format : PDF, ePub, Mobi
Download : 644
Read : 239

Category: Technology & Engineering

Handbook Of Sol Gel Science And Technology

Author : S. Sakka
ISBN : 1402079699
Genre : Technology & Engineering
File Size : 56.84 MB
Format : PDF, Mobi
Download : 371
Read : 155

Since Dr. Disiich of Germany prepared a glass lens by the sol-gel method around 1970, sol-gel science and technology has continued to develop. Since then this field has seen remarkable technical developments as well as a broadening of the applications of sol-gel science and technology. There is a growing need for a comprehensive reference that treats both the fundamentals and the applications, and this is the aim of Handbook of Sol-Gel Science and Technology. The primary purpose of sol-gel science and technology is to produce materials, active and non-active including optical, electronic, chemical, sensor, bio- and structural materials. This means that sol-gel science and technology is related to all kinds of manufacturing industries. Thus Volume 1, Sol-Gel Processing, is devoted to general aspects of processing. Newly developed materials such as organic-inorganic hybrids, photonic crystals, ferroelectric coatings, photocatalysts will be covered. Topics in this volume include: Synthesis and reaction of sol-gel precursors, Preparation of bulk glass and ceramics, Processing of porous materials based on self-organization, Synthesis of organic-inorganic hybrid materials, Coating of plastics, Special processes used in sol-gel formation of materials (1. Non-hydrolytic sol-gel process, 2. Sonogels, and 3. UV irradiation). Volume 2, Characterization of Sol-Gel Materials and Products, highlights the important fact that useful materials are only produced when characterization is tied to processing. Furthermore, characterization is essential to the understanding of nanostructured materials, and sol-gel technology is a most important technology in this new field. Since nanomaterials display their functional property based on their nano- and micro-structure, "characterization" is very important. Topics found in Volume 2 include: Determination of structure by NMR, In-situ characterization of the sol-gel reaction process, Determination of microstructure of oxide gels, Characterization of porous structure of gels by the surface measurements, Characterization of organic-inorganic hybrid, Measurements of rheological properties, Measurements of functional properties: fluorescence, laser, non-linear optical and other properties. Sol-gel technology is a versatile technology, making it possible to produce a wide variety of materials and to provide existing substances with novel properties. This technology was applied to producing novel materials, for example organic-inorganic hybrids, which are quite difficult to make by other fabricating techniques, and it was also applied to producing materials based on high temperature superconducting oxides. Volume 3, Applications of Sol-Gel Technology, will cover applications such as: Application of sol-gel method to processing of bulk silica glasses, Bulk porous gels prepared by sol-gel method, Application of sol-gel method to fabrication of glass and ceramic fibers, Reflective and antireflective coating films, Planar waveguides prepared by sol-gel method, Films with micropatterns and two-dimensional photonic crystals, Application of sol-gel method to formation of ferroelectric films, Application of sol-gel method to formation of photocatalytic coating films, Application of sol-gel method to bioactive coating films.
Category: Technology & Engineering

Aerogels Handbook

Author : Michel Andre Aegerter
ISBN : 1441975896
Genre : Technology & Engineering
File Size : 49.96 MB
Format : PDF, Mobi
Download : 917
Read : 331

Aerogels are the lightest solids known. Up to 1000 times lighter than glass and with a density as low as only four times that of air, they show very high thermal, electrical and acoustic insulation values and hold many entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal and ceramic materials, etc. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, thermal insulation and household uses are being developed with an estimated annual market growth rate of around 70% until 2015. The Aerogels Handbook summarizes state-of-the-art developments and processing of inorganic, organic, and composite aerogels, including the most important methods of synthesis, characterization as well as their typical applications and their possible market impact. Readers will find an exhaustive overview of all aerogel materials known today, their fabrication, upscaling aspects, physical and chemical properties, and most recent advances towards applications and commercial products, some of which are commercially available today. Key Features: •Edited and written by recognized worldwide leaders in the field •Appeals to a broad audience of materials scientists, chemists, and engineers in academic research and industrial R&D •Covers inorganic, organic, and composite aerogels •Describes military, aerospace, building industry, household, environmental, energy, and biomedical applications among others
Category: Technology & Engineering