THE ELEMENTS OF STATISTICAL LEARNING

Download The Elements Of Statistical Learning ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to THE ELEMENTS OF STATISTICAL LEARNING book pdf for free now.

The Elements Of Statistical Learning

Author : Trevor Hastie
ISBN : 9780387216065
Genre : Mathematics
File Size : 77.17 MB
Format : PDF, ePub, Docs
Download : 657
Read : 723

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
Category: Mathematics

Outlines And Highlights For The Elements Of Statistical Learning By Hastie Isbn

Author : Cram101 Textbook Reviews
ISBN : 1617440612
Genre : Education
File Size : 42.15 MB
Format : PDF, Docs
Download : 190
Read : 948

Never HIGHLIGHT a Book Again! Virtually all of the testable terms, concepts, persons, places, and events from the textbook are included. Cram101 Just the FACTS101 studyguides give all of the outlines, highlights, notes, and quizzes for your textbook with optional online comprehensive practice tests. Only Cram101 is Textbook Specific. Accompanys: 9780387848570 .
Category: Education

Wahrscheinlichkeitsrechnung Und Statistik

Author : Robert Hafner
ISBN : 9783709169445
Genre : Mathematics
File Size : 21.28 MB
Format : PDF, ePub
Download : 684
Read : 220

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.
Category: Mathematics

The Elements Of Statistical Learning

Author : Keith Glover
ISBN : 1981129170
Genre :
File Size : 65.54 MB
Format : PDF, ePub, Docs
Download : 779
Read : 474

The Elements of Statistical Learning features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorisation, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates.This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning.
Category:

An Introduction To Statistical Learning

Author : Gareth James
ISBN : 9781461471387
Genre : Mathematics
File Size : 37.27 MB
Format : PDF, Mobi
Download : 472
Read : 697

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Category: Mathematics

Maschinelles Lernen

Author : Ethem Alpaydin
ISBN : 3110617889
Genre : Computers
File Size : 84.92 MB
Format : PDF
Download : 853
Read : 1149

Category: Computers

The Elements Of Statistical Learning

Author : CTI Reviews
ISBN : 9781467248068
Genre : Education
File Size : 27.51 MB
Format : PDF, ePub, Mobi
Download : 104
Read : 784

Facts101 is your complete guide to The Elements of Statistical Learning. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.
Category: Education

The Elements Of Statistical Learning

Author : Robert Rhodes
ISBN : 1722065729
Genre :
File Size : 60.78 MB
Format : PDF, ePub, Docs
Download : 639
Read : 404

The book's protection is wide, from monitored studying (prediction) to without supervision studying. The many subjects include sensory systems, support vector devices, category plants and enhancing the first extensive treatment of this subject in any guide. This guide explains the important ideas in a variety of areas such as medication, chemistry, finance, and marketing in a common conceptual structure. While the strategy is mathematical, the focus is on ideas rather than arithmetic. Many illustrations are given, with a generous use of color design. It is an invaluable source for statisticians and anyone fascinated in data exploration in technology or industry.
Category:

Freakonomics

Author : Steven D. Levitt
ISBN : 3442154510
Genre :
File Size : 54.69 MB
Format : PDF
Download : 966
Read : 599

Sind Swimmingpools gefährlicher als Revolver? Warum betrügen Lehrer? Der preisgekrönte Wirtschaftswissenschaftler Steven D. Levitt kombiniert Statistiken, deren Zusammenführung und Gegenüberstellung auf den ersten Blick absurd erscheint, durch seine Analysetechnik aber zu zahlreichen Aha-Effekten führt. Ein äußerst unterhaltsamer Streifzug durch die Mysterien des Alltags, der uns schmunzeln lässt und stets über eindimensionales Denken hinausführt.
Category:

Statistik Workshop F R Programmierer

Author : Allen B. Downey
ISBN : 9783868993431
Genre : Computers
File Size : 76.96 MB
Format : PDF, Docs
Download : 756
Read : 744

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.
Category: Computers