TECHNIQUES FOR NUCLEAR AND PARTICLE PHYSICS EXPERIMENTS A HOW TO APPROACH

Download Techniques For Nuclear And Particle Physics Experiments A How To Approach ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to TECHNIQUES FOR NUCLEAR AND PARTICLE PHYSICS EXPERIMENTS A HOW TO APPROACH book pdf for free now.

Author : William R. Leo
ISBN : 9783642579202
Genre : Science
File Size : 83.7 MB
Format : PDF, ePub, Mobi
Download : 466
Read : 1309

A treatment of the experimental techniques and instrumentation most often used in nuclear and particle physics experiments as well as in various other experiments, providing useful results and formulae, technical know-how and informative details. This second edition has been revised, while sections on Cherenkov radiation and radiation protection have been updated and extended.

Author : William R. Leo
ISBN : 3540572805
Genre : Science
File Size : 82.35 MB
Format : PDF, Mobi
Download : 752
Read : 1001

This revised and extended second edition treats the experimental techniques and instrumentation most often used in nuclear and particle physics experiments as well as in various other experiments. It provides useful results and formulae, technical know-how and informative details in a very practical, hands-on style.

Author : Louis Lyons
ISBN : 0521379342
Genre : Science
File Size : 52.50 MB
Format : PDF, ePub, Docs
Download : 616
Read : 240

This practical approach to statistical problems arising regularly in analyzing data from nuclear and high energy physics experiments is geared toward non-statisticians.

Author : Glenn F. Knoll
ISBN : 9780470131480
Genre : Technology & Engineering
File Size : 38.88 MB
Format : PDF, Mobi
Download : 210
Read : 488

This is the resource that engineers turn to in the study of radiation detection. The fourth edition takes into account the technical developments that continue to enhance the instruments and techniques available for the detection and spectroscopy of ionizing radiation. New coverage is presented on ROC curves, micropattern gas detectors, new sensors for scintillation light, and the excess noise factor. Revised discussions are also included on TLDs and cryogenic spectrometers, radiation backgrounds, and the VME standard. Engineers will gain a strong understanding of the field with this updated book.

Author : A Das
ISBN : 9789814483339
Genre : Nuclear physics
File Size : 62.5 MB
Format : PDF, ePub, Mobi
Download : 685
Read : 208

' The original edition of Introduction to Nuclear and Particle Physics was used with great success for single-semester courses on nuclear and particle physics offered by American and Canadian universities at the undergraduate level. It was also translated into German, and used overseas. Being less formal but well-written, this book is a good vehicle for learning the more intuitive rather than formal aspects of the subject. It is therefore of value to scientists with a minimal background in quantum mechanics, but is sufficiently substantive to have been recommended for graduate students interested in the fields covered in the text. In the second edition, the material begins with an exceptionally clear development of Rutherford scattering and, in the four following chapters, discusses sundry phenomenological issues concerning nuclear properties and structure, and general applications of radioactivity and of the nuclear force. This is followed by two chapters dealing with interactions of particles in matter, and how these characteristics are used to detect and identify such particles. A chapter on accelerators rounds out the experimental aspects of the field. The final seven chapters deal with elementary-particle phenomena, both before and after the realization of the Standard Model. This is interspersed with discussion of symmetries in classical physics and in the quantum domain, bringing into full focus the issues concerning CP violation, isotopic spin, and other symmetries. The final three chapters are devoted to the Standard Model and to possibly new physics beyond it, emphasizing unification of forces, supersymmetry, and other exciting areas of current research. The book contains several appendices on related subjects, such as special relativity, the nature of symmetry groups, etc. There are also many examples and problems in the text that are of value in gauging the reader's understanding of the material. Contents:Rutherford ScatteringNuclear PhenomenologyNuclear ModelsNuclear RadiationApplications of Nuclear PhysicsEnergy Deposition in MediaParticle DetectionAcceleratorsProperties and Interactions of Elementary ParticlesSymmetriesDiscrete TransformationsNeutral Kaons, Oscillations, and CP ViolationFormulation of the Standard ModelStandard Model and Confrontation with DataBeyond the Standard Model Readership: Advanced undergraduates and researchers in nuclear and particle physics. Keywords:Rutherford Scattering;Nuclear Properties;Nuclear Structure;Elementary Particles;Sub-Structure of Particles;Particle Detectors;Interactions in Matter;The Standard Model;Symmetries of Nature;Theories of Nuclear and Particle Structure;Radioactivity;SupersymmetryReviews: “The book by Das and Ferbel is particularly suited as a basis for a one-semester course on both subjects since it contains a very concise introduction to those topics and I like very much the outline and contents of this book.” Kay Konigsmann Universität Freiburg, Germany “The book provides an introduction to the subject very well suited for the introductory course for physics majors. Presentation is very clear and nicely balances the issues of nuclear and particle physics, exposes both theoretical ideas and modern experimental methods. Presentation is also very economic and one can cover most of the book in a one-semester course. In the second edition, the authors updated the contents to reflect the very recent developments in the theory and experiment. They managed to do it without substantial increase of the size of the book. I used the first edition several times to teach the course ‘Introduction to Subatomic Physics’ and I am looking forward to use this new edition to teach the course next year.” Professor Mark Strikman Pennsylvania State University, USA “This book can be recommended to those who find elementary particle physics of absorbing interest.” Contemporary Physics '

Author : Stefaan Tavernier
ISBN : 3642008291
Genre : Science
File Size : 63.88 MB
Format : PDF
Download : 571
Read : 254

I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like “the velocity of the electrons in atoms is ?1% of the velocity of light”, a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work.

Author : Claude A. Pruneau
ISBN : 9781108267885
Genre : Science
File Size : 90.45 MB
Format : PDF, Mobi
Download : 678
Read : 751

A comprehensive guide to data analysis techniques for physical scientists, providing a valuable resource for advanced undergraduate and graduate students, as well as seasoned researchers. The book begins with an extensive discussion of the foundational concepts and methods of probability and statistics under both the frequentist and Bayesian interpretations of probability. It next presents basic concepts and techniques used for measurements of particle production cross-sections, correlation functions, and particle identification. Much attention is devoted to notions of statistical and systematic errors, beginning with intuitive discussions and progressively introducing the more formal concepts of confidence intervals, credible range, and hypothesis testing. The book also includes an in-depth discussion of the methods used to unfold or correct data for instrumental effects associated with measurement and process noise as well as particle and event losses, before ending with a presentation of elementary Monte Carlo techniques.

Author : O. R. Frisch
ISBN : 9781483224923
Genre : Science
File Size : 66.72 MB
Format : PDF
Download : 934
Read : 280

Progress in Nuclear Physics, Volume 3 covers the advances in the experimental and theoretical studies on some aspects of nuclear physics. This volume is divided into nine chapters that include discussions on diffusion cloud chamber, precision instruments, and ?erenkov radiation. The opening chapter deals with the theory, design, and experimental applications of diffusion cloud chamber. The next chapters explored the energy measurements using proportional and solid conduction counters; the methods for studying orienting nuclei or nucleons; and the theoretical interpretation and practical applications of Čerenkov radiation. These topics are followed by discussions on positron annihilation, the role of stripping reactions in nuclear physics, and the production of intense ion beams. The final chapter considers the importance of the study of nucleon-deuteron collisions in nuclear physics. This book is of value to nuclear physicists and researchers in the allied fields.

Author : Mark Thomson
ISBN : 9781107292543
Genre : Science
File Size : 40.86 MB
Format : PDF, ePub, Mobi
Download : 456
Read : 1292

Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book.

This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view. The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions. The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modem astrophysics and cosmology.“p> The seventh revised and extended edition includes new material, in particular the experimental verification of the Higgs particle at the LHC, recent results in neutrino physics, the violation of CP-symmetry in the decay of neutral B-mesons, the experimental investigations of the nucleon's spin structure and outstanding results of the HERA experiments in deep-inelastic electron- and positron-proton scattering. The concise text is based on lectures held at the University of Heidelberg and includes numerous exercises with worked answers. It has been translated into several languages and has become a standard reference for advanced undergraduate and graduate courses.