STATISTICAL SHAPE ANALYSIS WITH APPLICATIONS IN R WILEY SERIES IN PROBABILITY AND STATISTICS

Download Statistical Shape Analysis With Applications In R Wiley Series In Probability And Statistics ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to STATISTICAL SHAPE ANALYSIS WITH APPLICATIONS IN R WILEY SERIES IN PROBABILITY AND STATISTICS book pdf for free now.

Statistical Shape Analysis

Author : Ian L. Dryden
ISBN : 9780470699621
Genre : Mathematics
File Size : 75.88 MB
Format : PDF, ePub, Mobi
Download : 741
Read : 387

Originally published as: Statistical shape analysis, 1998
Category: Mathematics

Mixed Models

Author : Eugene Demidenko
ISBN : 9781118091579
Genre : Mathematics
File Size : 88.93 MB
Format : PDF, ePub
Download : 611
Read : 480

Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models' statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. The new edition includes significant updating, over 300 exercises, stimulating chapter projects and model simulations, inclusion of R subroutines, and a revised text format. The target audience continues to be graduate students and researchers. An author-maintained web site is available with solutions to exercises and a compendium of relevant data sets.
Category: Mathematics

Morphometrics With R

Author : Julien Claude
ISBN : 0387777903
Genre : Science
File Size : 82.56 MB
Format : PDF, Kindle
Download : 499
Read : 1020

This book aims to explain how to use R to perform morphometrics. Morpho- tric analysis is the study of shape and size variations and covariations and their covariations with other variables. Morphometrics is thus deeply rooted within stat- tical sciences. While most applications concern biology, morphometrics is becoming common tools used in archeological, palaeontological, geographical, or medicine disciplines. Since the recent formalizations of some of the ideas of predecessors, such as D’arcy Thompson, and thanks to the development of computer techno- gies and new ways for appraising shape changes and variation, morphometrics have undergone, and are still undergoing, a revolution. Most techniques dealing with s- tistical shape analysis have been developed in the last three decades, and the number of publications using morphometrics is increasing rapidly. However, the majority of these methods cannot be implemented in available software and therefore prosp- tive students often need to acquire detailed knowledge in informatics and statistics before applying them to their data. With acceleration in the accumulation of me- ods accompanying the emerging science of statistical shape analysis, it is becoming important to use tools that allow some autonomy. R easily helps ful?ll this need. Risalanguage andenvironment forstatisticalcomputingandgraphics. Although there is an increasing number of computer applications that perform morphometrics, using R has several advantages that confer to users considerable power and possible new horizons in a world that requires rapid adaptability.
Category: Science

Statistical Shape Analysis

Author : I. L. Dryden
ISBN : 0471958166
Genre : Mathematics
File Size : 82.85 MB
Format : PDF, ePub, Docs
Download : 784
Read : 704

Statistical Shape Analysis involves methods for the geometrical study of random objects where location, rotation and scale information can be removed. The book lays the foundations of the subject discussing key ideas and the very latest developments, as well as offering practical guidance and comparisons of techniques. There is a vast range of applications of shape analysis and the authors introduce the field to statisticians and applied researchers through important examples and data analysis in Biology, Medicine and Image Analysis. The text primarily concentrates on landmark data key points of correspondence located on each object. Careful consideration of the similarity invariances requires methods appropriate for non-Euclidean data analysis. In particular, multivariate statistical procedures cannot be applied directly, but can be adapted in certain instances. The book begins with introductory material on shape, size and coordinate systems. Planar Procrustes analysis is then discussed to highlight the main components of shape analysis. The shape space and general Procrustes methods are introduced, probability distributions for shape are described and statistical inference is discussed. Some deformation methods for shape change are also given and a special chapter is devoted to shape in image analysis. Finally, various alternative procedures including landmark-free methods are critically discussed and compared. Definitions and important results are highlighted throughout to assist the reader in learning about this new, exciting and important area.
Category: Mathematics

Geometry Driven Statistics

Author : Ian L. Dryden
ISBN : 9781118866573
Genre : Mathematics
File Size : 56.45 MB
Format : PDF, Docs
Download : 503
Read : 830

A timely collection of advanced, original material in the area of statistical methodology motivated by geometric problems, dedicated to the influential work of Kanti V. Mardia This volume celebrates Kanti V. Mardia′s long and influential career in statistics. A common theme unifying much of Mardia s work is the importance of geometry in statistics, and to highlight the areas emphasized in his research this book brings together 16 contributions from high–profile researchers in the field. Geometry Driven Statistics covers a wide range of application areas including directional data, shape analysis, spatial data, climate science, fingerprints, image analysis, computer vision and bioinformatics. The book will appeal to statisticians and others with an interest in data motivated by geometric considerations. Summarizing the state of the art, examining some new developments and presenting a vision for the future, Geometry Driven Statistics will enable the reader to broaden knowledge of important research areas in statistics and gain a new appreciation of the work and influence of Kanti V. Mardia.
Category: Mathematics

Functional And Shape Data Analysis

Author : Anuj Srivastava
ISBN : 9781493940202
Genre : Mathematics
File Size : 26.4 MB
Format : PDF, ePub, Mobi
Download : 343
Read : 612

This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling future scientific challenges. Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves—in one, two, and higher dimensions—both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.
Category: Mathematics

Statistics And Data With R

Author : Yosef Cohen
ISBN : 9780470721889
Genre : Mathematics
File Size : 85.20 MB
Format : PDF, ePub, Docs
Download : 672
Read : 719

R, an Open Source software, has become the de facto statistical computing environment. It has an excellent collection of data manipulation and graphics capabilities. It is extensible and comes with a large number of packages that allow statistical analysis at all levels – from simple to advanced – and in numerous fields including Medicine, Genetics, Biology, Environmental Sciences, Geology, Social Sciences and much more. The software is maintained and developed by academicians and professionals and as such, is continuously evolving and up to date. Statistics and Data with R presents an accessible guide to data manipulations, statistical analysis and graphics using R. Assuming no previous knowledge of statistics or R, the book includes: A comprehensive introduction to the R language. An integrated approach to importing and preparing data for analysis, exploring and analyzing the data, and presenting results. Over 300 examples, including detailed explanations of the R scripts used throughout. Over 100 moderately large data sets from disciplines ranging from Biology, Ecology and Environmental Science to Medicine, Law, Military and Social Sciences. A parallel discussion of analyses with the normal density, proportions (binomial), counts (Poisson) and bootstrap methods. Two extensive indexes that include references to every R function (and its arguments and packages used in the book) and to every introduced concept. An accompanying Wiki website, http://turtle.gis.umn.edu includes all the scripts and data used in the book. The website also features a solutions manual, providing answers to all of the exercises presented in the book. Visitors are invited to download/upload data and scripts and share comments, suggestions and questions with other visitors. Students, researchers and practitioners will find this to be both a valuable learning resource in statistics and R and an excellent reference book.
Category: Mathematics

Statistical Meta Analysis With Applications

Author : Joachim Hartung
ISBN : 9781118210963
Genre : Medical
File Size : 26.88 MB
Format : PDF, ePub, Docs
Download : 810
Read : 644

An accessible introduction to performing meta-analysis across various areas of research The practice of meta-analysis allows researchers to obtain findings from various studies and compile them to verify and form one overall conclusion. Statistical Meta-Analysis with Applications presents the necessary statistical methodologies that allow readers to tackle the four main stages of meta-analysis: problem formulation, data collection, data evaluation, and data analysis and interpretation. Combining the authors' expertise on the topic with a wealth of up-to-date information, this book successfully introduces the essential statistical practices for making thorough and accurate discoveries across a wide array of diverse fields, such as business, public health, biostatistics, and environmental studies. Two main types of statistical analysis serve as the foundation of the methods and techniques: combining tests of effect size and combining estimates of effect size. Additional topics covered include: Meta-analysis regression procedures Multiple-endpoint and multiple-treatment studies The Bayesian approach to meta-analysis Publication bias Vote counting procedures Methods for combining individual tests and combining individual estimates Using meta-analysis to analyze binary and ordinal categorical data Numerous worked-out examples in each chapter provide the reader with a step-by-step understanding of the presented methods. All exercises can be computed using the R and SAS software packages, which are both available via the book's related Web site. Extensive references are also included, outlining additional sources for further study. Requiring only a working knowledge of statistics, Statistical Meta-Analysis with Applications is a valuable supplement for courses in biostatistics, business, public health, and social research at the upper-undergraduate and graduate levels. It is also an excellent reference for applied statisticians working in industry, academia, and government.
Category: Medical

The R Book

Author : Michael J. Crawley
ISBN : 9781118448960
Genre : Mathematics
File Size : 60.4 MB
Format : PDF, Mobi
Download : 764
Read : 727

Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)
Category: Mathematics

Multivariate Time Series Analysis

Author : Ruey S. Tsay
ISBN : 9781118617755
Genre : Mathematics
File Size : 63.83 MB
Format : PDF, Kindle
Download : 178
Read : 926

An accessible guide to the multivariate time series tools used in numerous real-world applications Multivariate Time Series Analysis: With R and Financial Applications is the much anticipated sequel coming from one of the most influential and prominent experts on the topic of time series. Through a fundamental balance of theory and methodology, the book supplies readers with a comprehensible approach to financial econometric models and their applications to real-world empirical research. Differing from the traditional approach to multivariate time series, the book focuses on reader comprehension by emphasizing structural specification, which results in simplified parsimonious VAR MA modeling. Multivariate Time Series Analysis: With R and Financial Applications utilizes the freely available R software package to explore complex data and illustrate related computation and analyses. Featuring the techniques and methodology of multivariate linear time series, stationary VAR models, VAR MA time series and models, unitroot process, factor models, and factor-augmented VAR models, the book includes: • Over 300 examples and exercises to reinforce the presented content • User-friendly R subroutines and research presented throughout to demonstrate modern applications • Numerous datasets and subroutines to provide readers with a deeper understanding of the material Multivariate Time Series Analysis is an ideal textbook for graduate-level courses on time series and quantitative finance and upper-undergraduate level statistics courses in time series. The book is also an indispensable reference for researchers and practitioners in business, finance, and econometrics.
Category: Mathematics