STATISTICAL ANALYSIS OF NETWORK DATA METHODS AND MODELS SPRINGER SERIES IN STATISTICS

Download Statistical Analysis Of Network Data Methods And Models Springer Series In Statistics ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to STATISTICAL ANALYSIS OF NETWORK DATA METHODS AND MODELS SPRINGER SERIES IN STATISTICS book pdf for free now.

Statistical Analysis Of Network Data

Author : Eric D. Kolaczyk
ISBN : 9780387881461
Genre : Computers
File Size : 82.70 MB
Format : PDF, ePub, Docs
Download : 593
Read : 607

In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.
Category: Computers

Statistical Analysis Of Network Data With R

Author : Eric D. Kolaczyk
ISBN : 9781493909834
Genre : Computers
File Size : 35.63 MB
Format : PDF, Mobi
Download : 467
Read : 724

Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).
Category: Computers

Analysis And Modeling Of Complex Data In Behavioral And Social Sciences

Author : Donatella Vicari
ISBN : 9783319066929
Genre : Mathematics
File Size : 82.99 MB
Format : PDF, ePub, Docs
Download : 915
Read : 218

This volume presents theoretical developments, applications and computational methods for the analysis and modeling in behavioral and social sciences where data are usually complex to explore and investigate. The challenging proposals provide a connection between statistical methodology and the social domain with particular attention to computational issues in order to effectively address complicated data analysis problems. The papers in this volume stem from contributions initially presented at the joint international meeting JCS-CLADAG held in Anacapri (Italy) where the Japanese Classification Society and the Classification and Data Analysis Group of the Italian Statistical Society had a stimulating scientific discussion and exchange.
Category: Mathematics

Formal Concept Analysis Of Social Networks

Author : Rokia Missaoui
ISBN : 9783319641676
Genre : Computers
File Size : 72.9 MB
Format : PDF, ePub, Mobi
Download : 834
Read : 1266

The book studies the existing and potential connections between Social Network Analysis (SNA) and Formal Concept Analysis (FCA) by showing how standard SNA techniques, usually based on graph theory, can be supplemented by FCA methods, which rely on lattice theory. The book presents contributions to the following areas: acquisition of terminological knowledge from social networks, knowledge communities, individuality computation, other types of FCA-based analysis of bipartite graphs (two-mode networks), multimodal clustering, community detection and description in one-mode and multi-mode networks, adaptation of the dual-projection approach to weighted bipartite graphs, extensions to the Kleinberg's HITS algorithm as well as attributed graph analysis.
Category: Computers

The Sage Handbook Of Social Network Analysis

Author : John Scott
ISBN : 9781446250112
Genre : Social Science
File Size : 46.34 MB
Format : PDF, Mobi
Download : 202
Read : 698

This sparkling Handbook offers an unrivalled resource for those engaged in the cutting edge field of social network analysis. Systematically, it introduces readers to the key concepts, substantive topics, central methods and prime debates. Among the specific areas covered are: Network theory Interdisciplinary applications Online networks Corporate networks Lobbying networks Deviant networks Measuring devices Key Methodologies Software applications. The result is a peerless resource for teachers and students which offers a critical survey of the origins, basic issues and major debates. The Handbook provides a one-stop guide that will be used by readers for decades to come.
Category: Social Science

Data Analysis For Network Cyber Security

Author : Niall Adams
ISBN : 9781783263769
Genre : Computers
File Size : 27.36 MB
Format : PDF, Docs
Download : 363
Read : 910

There is increasing pressure to protect computer networks against unauthorized intrusion, and some work in this area is concerned with engineering systems that are robust to attack. However, no system can be made invulnerable. Data Analysis for Network Cyber-Security focuses on monitoring and analyzing network traffic data, with the intention of preventing, or quickly identifying, malicious activity. Such work involves the intersection of statistics, data mining and computer science. Fundamentally, network traffic is relational, embodying a link between devices. As such, graph analysis approaches are a natural candidate. However, such methods do not scale well to the demands of real problems, and the critical aspect of the timing of communications events is not accounted for in these approaches. This book gathers papers from leading researchers to provide both background to the problems and a description of cutting-edge methodology. The contributors are from diverse institutions and areas of expertise and were brought together at a workshop held at the University of Bristol in March 2013 to address the issues of network cyber security. The workshop was supported by the Heilbronn Institute for Mathematical Research. Contents:Inference for Graphs and Networks: Adapting Classical Tools to Modern Data (Benjamin P Olding and Patrick J Wolfe)Rapid Detection of Attacks in Computer Networks by Quickest Changepoint Detection Methods (Alexander G Tartakovsky)Statistical Detection of Intruders Within Computer Networks Using Scan Statistics (Joshua Neil, Curtis Storlie, Curtis Hash and Alex Brugh)Characterizing Dynamic Group Behavior in Social Networks for Cybernetics (Sumeet Dua and Pradeep Chowriappa)Several Approaches for Detecting Anomalies in Network Traffic Data (Céline Lévy-Leduc)Monitoring a Device in a Communication Network (Nicholas A Heard and Melissa Turcotte) Readership: Researchers and graduate students in the fields of network traffic data analysis and network cyber security. Key Features:This book is unique in being a treatise on the statistical analysis of network traffic dataThe contributors are leading researches in the field and will give authoritative descriptions of cutting edge methodologyThe book features material from diverse areas, and as such forms a unified view of network cyber securityKeywords:Network Data Analysis;Cyber Security;Change Detection;Anomaly Detection
Category: Computers

Web And Network Data Science

Author : Thomas W. Miller
ISBN : 9780133887648
Genre : Computers
File Size : 84.38 MB
Format : PDF, ePub
Download : 660
Read : 909

Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.
Category: Computers

Modeling Techniques In Predictive Analytics

Author : Thomas W. Miller
ISBN : 9780133886191
Genre : Computers
File Size : 42.52 MB
Format : PDF, ePub, Mobi
Download : 849
Read : 1210

To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Category: Computers

Modeling Techniques In Predictive Analytics With Python And R

Author : Thomas W. Miller
ISBN : 9780133892147
Genre : Computers
File Size : 29.53 MB
Format : PDF, Mobi
Download : 761
Read : 805

Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Category: Computers