Download Spectra Of Graphs ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to SPECTRA OF GRAPHS book pdf for free now.

Author : Dragoš M. Cvetković
ISBN : UOM:39015040419585
Genre : Mathematics
File Size : 68.33 MB
Format : PDF, ePub, Docs
Download : 268
Read : 1267

The theory of graph spectra can, in a way, be considered as an attempt to utilize linear algebra including, in particular, the well-developed theory of matrices for the purposes of graph theory and its applications. However, that does not mean that the theory of graph spectra can be reduced to the theory of matrices; on the contrary, it has its own characteristic features and specific ways of reasoning fully justifying it to be treated as a theory in its own right.

Author : Andries E. Brouwer
ISBN : 9781461419396
Genre : Mathematics
File Size : 81.49 MB
Format : PDF, ePub, Mobi
Download : 314
Read : 745

This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. Spectra of Graphs is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.

Author : Dragoš M. Cvetković
ISBN : UOM:39015014352333
Genre : Mathematics
File Size : 53.24 MB
Format : PDF, ePub, Docs
Download : 365
Read : 1089

The theory of graph spectra can, in a way, be considered as an attempt to utilize linear algebra including, in particular, the well-developed theory of matrices for the purposes of graph theory and its applications. However, that does not mean that the theory of graph spectra can be reduced to the theory of matrices; on the contrary, it has its own characteristic features and specific ways of reasoning fully justifying it to be treated as a theory in its own right.

Author : Piet van Mieghem
ISBN : 9781139492270
Genre : Technology & Engineering
File Size : 78.64 MB
Format : PDF, ePub, Docs
Download : 534
Read : 1309

Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics.

Author : Dragoš M. Cvetković
ISBN : UOM:39015014352333
Genre : Mathematics
File Size : 70.27 MB
Format : PDF, Kindle
Download : 950
Read : 327

The theory of graph spectra can, in a way, be considered as an attempt to utilize linear algebra including, in particular, the well-developed theory of matrices for the purposes of graph theory and its applications. However, that does not mean that the theory of graph spectra can be reduced to the theory of matrices; on the contrary, it has its own characteristic features and specific ways of reasoning fully justifying it to be treated as a theory in its own right.

The purpose of this volume is to review the results in spectral graph theory which have appeared since 1978. The problem of characterizing graphs with least eigenvalue -2 was one of the original problems of spectral graph theory. The techniques used in the investigation of this problem have continued to be useful in other contexts including forbidden subgraph techniques as well as geometric methods involving root systems. In the meantime, the particular problem giving rise to these methods has been solved almost completely. This is indicated in Chapter 1. The study of various combinatorial objects (including distance regular and distance transitive graphs, association schemes, and block designs) have made use of eigenvalue techniques, usually as a method to show the nonexistence of objects with certain parameters. The basic method is to construct a graph which contains the structure of the combinatorial object and then to use the properties of the eigenvalues of the graph. Methods of this type are given in Chapter 2. Several topics have been included in Chapter 3, including the relationships between the spectrum and automorphism group of a graph, the graph isomorphism and the graph reconstruction problem, spectra of random graphs, and the Shannon capacity problem. Some graph polynomials related to the characteristic polynomial are described in Chapter 4. These include the matching, distance, and permanental polynomials. Applications of the theory of graph spectra to Chemistry and other branches of science are described from a mathematical viewpoint in Chapter 5. The last chapter is devoted to the extension of the theory of graph spectra to infinite graphs.

This volume is a collection of articles dedicated to quantum graphs, a newly emerging interdisciplinary field related to various areas of mathematics and physics. The reader can find a broad overview of the theory of quantum graphs. The articles present methods coming from different areas of mathematics: number theory, combinatorics, mathematical physics, differential equations, spectral theory, global analysis, and theory of fractals. They also address various important applications, such as Anderson localization, electrical networks, quantum chaos, mesoscopic physics, superconductivity, optics, and biological modeling.

Author : Lowell W. Beineke
ISBN : 9781107079458
Genre : Mathematics
File Size : 58.57 MB
Format : PDF, ePub, Mobi
Download : 906
Read : 727

The rapidly expanding area of algebraic graph theory uses two different branches of algebra to explore various aspects of graph theory: linear algebra (for spectral theory) and group theory (for studying graph symmetry). These areas have links with other areas of mathematics, such as logic and harmonic analysis, and are increasingly being used in such areas as computer networks where symmetry is an important feature. Other books cover portions of this material, but this book is unusual in covering both of these aspects and there are no other books with such a wide scope. Peter J. Cameron, internationally recognized for his substantial contributions to the area, served as academic consultant for this volume, and the result is ten expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory, linear algebra and group theory. Each chapter concludes with an extensive list of references.