Download Spectra Of Graphs Universitext ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to SPECTRA OF GRAPHS UNIVERSITEXT book pdf for free now.

Author : Andries E. Brouwer
ISBN : 9781461419396
Genre : Mathematics
File Size : 89.10 MB
Format : PDF, Mobi
Download : 699
Read : 984

This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. Spectra of Graphs is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.

This volume contains twenty contributions in the area of mathematical physics where Fritz Gesztesy made profound contributions. There are three survey papers in spectral theory, differential equations, and mathematical physics, which highlight, in particu

Author : Nadia Mana
ISBN : 9783642332128
Genre : Computers
File Size : 27.70 MB
Format : PDF, ePub
Download : 922
Read : 341

This book constitutes the refereed proceedings of the 5th INNS IAPR TC3 GIRPR International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2012, held in Trento, Italy, in September 2012. The 21 revised full papers presented were carefully reviewed and selected for inclusion in this volume. They cover a large range of topics in the field of neural network- and machine learning-based pattern recognition presenting and discussing the latest research, results, and ideas in these areas.

Author : Ralucca Gera
ISBN : 9783319976860
Genre : Combinatorial analysis
File Size : 63.58 MB
Format : PDF, ePub, Docs
Download : 478
Read : 689

This second volume in a two-volume series provides an extensive collection of conjectures and open problems in graph theory. It is designed for both graduate students and established researchers in discrete mathematics who are searching for research ideas and references. Each chapter provides more than a simple collection of results on a particular topic; it captures the reader’s interest with techniques that worked and failed in attempting to solve particular conjectures. The history and origins of specific conjectures and the methods of researching them are also included throughout this volume. Students and researchers can discover how the conjectures have evolved and the various approaches that have been used in an attempt to solve them. An annotated glossary of nearly 300 graph theory parameters, 70 conjectures, and over 600 references is also included in this volume. This glossary provides an understanding of parameters beyond their definitions and enables readers to discover new ideas and new definitions in graph theory. The editors were inspired to create this series of volumes by the ... special sessions entitled "My Favorite Graph Theory Conjectures," which they organized at past AMS meetings. These sessions were held at the winter AMS/MAA Joint Meeting in Boston, January 2012, the SIAM Conference on Discrete Mathematics in Halifax in June 2012, as well as the winter AMS/MAA Joint Meeting in Baltimore in January 2014, at which many of the best-known graph theorists spoke. In an effort to aid in the creation and dissemination of conjectures and open problems, which is crucial to the growth and development of this field, the editors invited these speakers, as well as other experts in graph theory, to contribute to this series.

Author : Stephan Wagner
ISBN : 9780429833984
Genre : Mathematics
File Size : 20.71 MB
Format : PDF, Mobi
Download : 935
Read : 553

Introduction to Chemical Graph Theory is a concise introduction to the main topics and techniques in chemical graph theory, specifically the theory of topological indices. These include distance-based, degree-based, and counting-based indices. The book covers some of the most commonly used mathematical approaches in the subject. It is also written with the knowledge that chemical graph theory has many connections to different branches of graph theory (such as extremal graph theory, spectral graph theory). The authors wrote the book in an appealing way that attracts people to chemical graph theory. In doing so, the book is an excellent playground and general reference text on the subject, especially for young mathematicians with a special interest in graph theory. Key Features: A concise introduction to topological indices of graph theory Appealing to specialists and non-specialists alike Provides many techniques from current research About the Authors: Stephan Wagner grew up in Graz (Austria), where he also received his PhD from Graz University of Technology in 2006. Shortly afterwards, he moved to South Africa, where he started his career at Stellenbosch University as a lecturer in January 2007. His research interests lie mostly in combinatorics and related areas, including connections to other scientific fields such as physics, chemistry and computer science. Hua Wang received his PhD from University of South Carolina in 2005. He held a Visiting Research Assistant Professor position at University of Florida before joining Georgia Southern University in 2008. His research interests include combinatorics and graph theory, elementary number theory, and related problems

Author : R. Balakrishnan
ISBN : 0387988599
Genre : Mathematics
File Size : 50.41 MB
Format : PDF, Kindle
Download : 389
Read : 584

Here is a solid introduction to graph theory, covering Dirac's theorem on k-connected graphs, Harary-Nashwilliam's theorem on the hamiltonicity of line graphs, Toida-McKee's characterization of Eulerian graphs, Fournier's proof of Kuratowski's theorem on planar graphs, and more. The book does not presuppose deep knowledge of any branch of mathematics, but requires only the basics of mathematics.

Author : Jürgen Jost
ISBN : 9781447163534
Genre : Mathematics
File Size : 35.37 MB
Format : PDF, Mobi
Download : 968
Read : 1301

Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical Methods in Biology and Neurobiology introduces and develops these mathematical structures and methods in a systematic manner. It studies: • discrete structures and graph theory • stochastic processes • dynamical systems and partial differential equations • optimization and the calculus of variations. The biological applications range from molecular to evolutionary and ecological levels, for example: • cellular reaction kinetics and gene regulation • biological pattern formation and chemotaxis • the biophysics and dynamics of neurons • the coding of information in neuronal systems • phylogenetic tree reconstruction • branching processes and population genetics • optimal resource allocation • sexual recombination • the interaction of species. Written by one of the most experienced and successful authors of advanced mathematical textbooks, this book stands apart for the wide range of mathematical tools that are featured. It will be useful for graduate students and researchers in mathematics and physics that want a comprehensive overview and a working knowledge of the mathematical tools that can be applied in biology. It will also be useful for biologists with some mathematical background that want to learn more about the mathematical methods available to deal with biological structures and data.

Author : Roger Mansuy
ISBN : 3540499660
Genre : Mathematics
File Size : 74.82 MB
Format : PDF, Mobi
Download : 430
Read : 1205

Stochastic calculus and excursion theory are very efficient tools for obtaining either exact or asymptotic results about Brownian motion and related processes. This book focuses on special classes of Brownian functionals, including Gaussian subspaces of the Gaussian space of Brownian motion; Brownian quadratic funtionals; Brownian local times; Exponential functionals of Brownian motion with drift; Time spent by Brownian motion below a multiple of its one-sided supremum.