SET THEORY AND THE CONTINUUM PROBLEM

Download Set Theory And The Continuum Problem ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to SET THEORY AND THE CONTINUUM PROBLEM book pdf for free now.

Set Theory And The Continuum Problem

Author : Raymond M. Smullyan
ISBN : 0486474844
Genre : Mathematics
File Size : 61.30 MB
Format : PDF, ePub, Docs
Download : 486
Read : 805

A lucid, elegant, and complete survey of set theory, this three-part treatment explores axiomatic set theory, the consistency of the continuum hypothesis, and forcing and independence results. 1996 edition.
Category: Mathematics

Set Theory And The Continuum Hypothesis

Author : Paul J. Cohen
ISBN : 9780486469218
Genre : Mathematics
File Size : 74.43 MB
Format : PDF, Mobi
Download : 667
Read : 765

This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
Category: Mathematics

The Consistency Of The Axiom Of Choice And Of The Generalized Continuum Hypothesis With The Axioms Of Set Theory

Author : Kurt G?del
ISBN : 0691079277
Genre : Mathematics
File Size : 46.92 MB
Format : PDF, Kindle
Download : 156
Read : 476

Kurt Gödel, mathematician and logician, was one of the most influential thinkers of the twentieth century. Gödel fled Nazi Germany, fearing for his Jewish wife and fed up with Nazi interference in the affairs of the mathematics institute at the University of Göttingen. In 1933 he settled at the Institute for Advanced Study in Princeton, where he joined the group of world-famous mathematicians who made up its original faculty. His 1940 book, better known by its short title, The Consistency of the Continuum Hypothesis, is a classic of modern mathematics. The continuum hypothesis, introduced by mathematician George Cantor in 1877, states that there is no set of numbers between the integers and real numbers. It was later included as the first of mathematician David Hilbert's twenty-three unsolved math problems, famously delivered as a manifesto to the field of mathematics at the International Congress of Mathematicians in Paris in 1900. In The Consistency of the Continuum Hypothesis Gödel set forth his proof for this problem. In 1999, Time magazine ranked him higher than fellow scientists Edwin Hubble, Enrico Fermi, John Maynard Keynes, James Watson, Francis Crick, and Jonas Salk. He is most renowned for his proof in 1931 of the 'incompleteness theorem,' in which he demonstrated that there are problems that cannot be solved by any set of rules or procedures. His proof wrought fruitful havoc in mathematics, logic, and beyond.
Category: Mathematics

The Philosophy Of Set Theory

Author : Mary Tiles
ISBN : 0486435202
Genre : Mathematics
File Size : 69.77 MB
Format : PDF, Kindle
Download : 676
Read : 977

A century ago, Georg Cantor demonstrated the possibility of a series of transfinite infinite numbers. His methods, unorthodox for the time, enabled him to derive theorems that established a mathematical reality for a hierarchy of infinities. Cantor's innovation was opposed, and ignored, by the establishment; years later, the value of his work was recognized and appreciated as a landmark in mathematical thought, forming the beginning of set theory and the foundation for most of contemporary mathematics. As Cantor's sometime collaborator, David Hilbert, remarked, "No one will drive us from the paradise that Cantor has created." This volume offers a guided tour of modern mathematics' Garden of Eden, beginning with perspectives on the finite universe and classes and Aristotelian logic. Author Mary Tiles further examines permutations, combinations, and infinite cardinalities; numbering the continuum; Cantor's transfinite paradise; axiomatic set theory; logical objects and logical types; and independence results and the universe of sets. She concludes with views of the constructs and reality of mathematical structure. Philosophers with only a basic grounding in mathematics, as well as mathematicians who have taken only an introductory course in philosophy, will find an abundance of intriguing topics in this text, which is appropriate for undergraduate-and graduate-level courses.
Category: Mathematics

Foundations Of Set Theory

Author : A.A. Fraenkel
ISBN : 0080887058
Genre : Computers
File Size : 84.28 MB
Format : PDF, Docs
Download : 974
Read : 487

Foundations of Set Theory discusses the reconstruction undergone by set theory in the hands of Brouwer, Russell, and Zermelo. Only in the axiomatic foundations, however, have there been such extensive, almost revolutionary, developments. This book tries to avoid a detailed discussion of those topics which would have required heavy technical machinery, while describing the major results obtained in their treatment if these results could be stated in relatively non-technical terms. This book comprises five chapters and begins with a discussion of the antinomies that led to the reconstruction of set theory as it was known before. It then moves to the axiomatic foundations of set theory, including a discussion of the basic notions of equality and extensionality and axioms of comprehension and infinity. The next chapters discuss type-theoretical approaches, including the ideal calculus, the theory of types, and Quine's mathematical logic and new foundations; intuitionistic conceptions of mathematics and its constructive character; and metamathematical and semantical approaches, such as the Hilbert program. This book will be of interest to mathematicians, logicians, and statisticians.
Category: Computers

Cantorian Set Theory And Limitation Of Size

Author : Michael Hallett
ISBN : 0198532830
Genre : Mathematics
File Size : 44.55 MB
Format : PDF, ePub, Mobi
Download : 824
Read : 226

Cantor's ideas formed the basis for set theory and also for the mathematical treatment of the concept of infinity. The philosophical and heuristic framework he developed had a lasting effect on modern mathematics, and is the recurrent theme of this volume. Hallett explores Cantor's ideas and, in particular, their ramifications for Zermelo-Frankel set theory.
Category: Mathematics

Empiricism Logic And Mathematics

Author : Hans Hahn
ISBN : 9789400989825
Genre : Science
File Size : 37.26 MB
Format : PDF, Docs
Download : 421
Read : 1021

The role Hans Hahn played in the Vienna Circle has not always been sufficiently appreciated. It was important in several ways. In the ftrst place, Hahn belonged to the trio of the original planners of the Circle. As students at the University of Vienna and throughout the fIrst decade of this century, he and his friends, Philipp Frank and Otto Neurath, met more or less regularly to discuss philosophical questions. When Hahn accepted his fIrSt professorial position, at the University of Czernowitz in the north east of the Austrian empire, and the paths of the three friends parted, they decided to continue such informal discussions at some future time - perhaps in a somewhat larger group and with the cooperation of a philosopher from the university. Various events delayed the execution of the project. Drafted into the Austrian army during the first world war" Hahn was wounded on the Italian front. Toward the end of the war he accepted an offer from the University of Bonn extended in recognition of his remarkable 1 mathematical achievements. He remained in Bonn until the spring of 1921 when he returm:d to Vienna and a chair of mathe matics at his alma mater. There, in 1922, the Mach-Boltzmann professorship for the philosophy of the inductive sciences became vacant by the death of Adolf Stohr; and Hahn saw a chance to realize his and his friends' old plan.
Category: Science

Labyrinth Of Thought

Author : Jose Ferreiros
ISBN : 3764357495
Genre : Mathematics
File Size : 44.80 MB
Format : PDF, ePub, Mobi
Download : 904
Read : 931

"José Ferreirós has written a magisterial account of the history of set theory which is panoramic, balanced, and engaging. Not only does this book synthesize much previous work and provide fresh insights and points of view, but it also features a major innovation, a full-fledged treatment of the emergence of the set-theoretic approach in mathematics from the early nineteenth century. This takes up Part One of the book. Part Two analyzes the crucial developments in the last quarter of the nineteenth century, above all the work of Cantor, but also Dedekind and the interaction between the two. Lastly, Part Three details the development of set theory up to 1950, taking account of foundational questions and the emergence of the modern axiomatization." (Bulletin of Symbolic Logic)
Category: Mathematics

Problems And Theorems In Classical Set Theory

Author : Peter Komjath
ISBN : 9780387362199
Genre : Mathematics
File Size : 20.96 MB
Format : PDF, ePub
Download : 539
Read : 1213

This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.
Category: Mathematics

From The Calculus To Set Theory 1630 1910

Author : I. Grattan-Guinness
ISBN : 0691070822
Genre : Mathematics
File Size : 34.83 MB
Format : PDF, ePub
Download : 903
Read : 617

From the Calculus to Set Theory traces the development of the calculus from the early seventeenth century through its expansion into mathematical analysis to the developments in set theory and the foundations of mathematics in the early twentieth century. It chronicles the work of mathematicians from Descartes and Newton to Russell and Hilbert and many, many others while emphasizing foundational questions and underlining the continuity of developments in higher mathematics. The other contributors to this volume are H. J. M. Bos, R. Bunn, J. W. Dauben, T. W. Hawkins, and K. Møller-Pedersen.
Category: Mathematics