SEPARATION OF VARIABLES FOR PARTIAL DIFFERENTIAL EQUATIONS AN EIGENFUNCTION APPROACH STUDIES IN ADVANCED MATHEMATICS

Download Separation Of Variables For Partial Differential Equations An Eigenfunction Approach Studies In Advanced Mathematics ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to SEPARATION OF VARIABLES FOR PARTIAL DIFFERENTIAL EQUATIONS AN EIGENFUNCTION APPROACH STUDIES IN ADVANCED MATHEMATICS book pdf for free now.

Author : George Cain
ISBN : 1584884207
Genre : Mathematics
File Size : 88.77 MB
Format : PDF, Mobi
Download : 661
Read : 441

Separation of Variables for Partial Differential Equations: An Eigenfunction Approach includes many realistic applications beyond the usual model problems. The book concentrates on the method of separation of variables for partial differential equations, which remains an integral part of the training in applied mathematics. Beyond the usual model problems, the presentation includes a number of realistic applications that illustrate the power and usefulness of the ideas behind these techniques. This complete, self-contained book includes numerous exercises and error estimates, as well as a rigorous approximation and computational tool.

Author : James Kirkwood
ISBN : 9780128147603
Genre : Mathematics
File Size : 66.47 MB
Format : PDF, ePub, Mobi
Download : 474
Read : 252

Mathematical Physics with Partial Differential Equations, Second Edition, is designed for upper division undergraduate and beginning graduate students taking mathematical physics taught out by math departments. The new edition is based on the success of the first, with a continuing focus on clear presentation, detailed examples, mathematical rigor and a careful selection of topics. It presents the familiar classical topics and methods of mathematical physics with more extensive coverage of the three most important partial differential equations in the field of mathematical physics—the heat equation, the wave equation and Laplace’s equation. The book presents the most common techniques of solving these equations, and their derivations are developed in detail for a deeper understanding of mathematical applications. Unlike many physics-leaning mathematical physics books on the market, this work is heavily rooted in math, making the book more appealing for students wanting to progress in mathematical physics, with particularly deep coverage of Green’s functions, the Fourier transform, and the Laplace transform. A salient characteristic is the focus on fewer topics but at a far more rigorous level of detail than comparable undergraduate-facing textbooks. The depth of some of these topics, such as the Dirac-delta distribution, is not matched elsewhere. New features in this edition include: novel and illustrative examples from physics including the 1-dimensional quantum mechanical oscillator, the hydrogen atom and the rigid rotor model; chapter-length discussion of relevant functions, including the Hermite polynomials, Legendre polynomials, Laguerre polynomials and Bessel functions; and all-new focus on complex examples only solvable by multiple methods. Introduces and evaluates numerous physical and engineering concepts in a rigorous mathematical framework Provides extremely detailed mathematical derivations and solutions with extensive proofs and weighting for application potential Explores an array of detailed examples from physics that give direct application to rigorous mathematics Offers instructors useful resources for teaching, including an illustrated instructor's manual, PowerPoint presentations in each chapter and a solutions manual

Author : Christian Constanda
ISBN : 1584882573
Genre : Mathematics
File Size : 88.40 MB
Format : PDF, Kindle
Download : 560
Read : 1115

Of the many available texts on partial differential equations (PDEs), most are too detailed and voluminous, making them daunting to many students. In sharp contrast, Solution Techniques for Elementary Partial Differential Equations is a no-frills treatment that explains completely but succinctly some of the most fundamental solution methods for PDEs. After a brief review of elementary ODE techniques and discussions on Fourier series and Sturm-Liouville problems, the author introduces the heat, Laplace, and wave equations as mathematical models of physical phenomena. He then presents a number of solution techniques and applies them to specific initial/boundary value problems for these models. Discussion of the general second order linear equation in two independent variables follows, and finally, the method of characteristics and perturbation methods are presented. Most students seem to like concise, easily digestible explanations and worked examples that let them see the techniques in action. This text offers them both. Ideally suited for independent study and classroom tested with great success, it offers a direct, streamlined route to competence in PDE solution techniques.

Author : David Colton
ISBN : 9780486438344
Genre : Mathematics
File Size : 63.46 MB
Format : PDF, Mobi
Download : 750
Read : 688

This text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Classical topics presented in a modern context include coverage of integral equations and basic scattering theory. Includes examples of inverse problems arising from improperly posed applications as well as exercises, many with answers. 1988 edition.

Author : Dean G. Duffy
ISBN : 9781498739672
Genre : Mathematics
File Size : 47.69 MB
Format : PDF, ePub, Mobi
Download : 809
Read : 579

Advanced Engineering Mathematics with MATLAB, Fourth Edition builds upon three successful previous editions. It is written for today’s STEM (science, technology, engineering, and mathematics) student. Three assumptions under lie its structure: (1) All students need a firm grasp of the traditional disciplines of ordinary and partial differential equations, vector calculus and linear algebra. (2) The modern student must have a strong foundation in transform methods because they provide the mathematical basis for electrical and communication studies. (3) The biological revolution requires an understanding of stochastic (random) processes. The chapter on Complex Variables, positioned as the first chapter in previous editions, is now moved to Chapter 10. The author employs MATLAB to reinforce concepts and solve problems that require heavy computation. Along with several updates and changes from the third edition, the text continues to evolve to meet the needs of today’s instructors and students.

This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.

Author : Jonathan D. H. Smith
ISBN : 1420010638
Genre : Mathematics
File Size : 49.99 MB
Format : PDF, ePub, Mobi
Download : 241
Read : 384

Collecting results scattered throughout the literature into one source, An Introduction to Quasigroups and Their Representations shows how representation theories for groups are capable of extending to general quasigroups and illustrates the added depth and richness that result from this extension. To fully understand representation theory, the first three chapters provide a foundation in the theory of quasigroups and loops, covering special classes, the combinatorial multiplication group, universal stabilizers, and quasigroup analogues of abelian groups. Subsequent chapters deal with the three main branches of representation theory-permutation representations of quasigroups, combinatorial character theory, and quasigroup module theory. Each chapter includes exercises and examples to demonstrate how the theories discussed relate to practical applications. The book concludes with appendices that summarize some essential topics from category theory, universal algebra, and coalgebras. Long overshadowed by general group theory, quasigroups have become increasingly important in combinatorics, cryptography, algebra, and physics. Covering key research problems, An Introduction to Quasigroups and Their Representations proves that you can apply group representation theories to quasigroups as well.

Author : Clark Robinson
ISBN : 9781482227871
Genre : Mathematics
File Size : 81.61 MB
Format : PDF, Docs
Download : 674
Read : 476

Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student focusing on multidimensional systems of real variables The book treats the dynamics of both iteration of functions and solutions of ordinary differential equations. Many concepts are first introduced for iteration of functions where the geometry is simpler, but results are interpreted for differential equations. The dynamical systems approach of the book concentrates on properties of the whole system or subsets of the system rather than individual solutions. The more local theory discussed deals with characterizing types of solutions under various hypothesis, and later chapters address more global aspects.

Author : H. F. Weinberger
ISBN : 9780486132044
Genre : Mathematics
File Size : 40.8 MB
Format : PDF, Docs
Download : 442
Read : 295

Suitable for advanced undergraduate and graduate students, this text presents the general properties of partial differential equations, including the elementary theory of complex variables. Solutions. 1965 edition.

Author : Martha L Abell
ISBN : 9781483266572
Genre : Mathematics
File Size : 60.87 MB
Format : PDF, Mobi
Download : 961
Read : 1085

Differential Equations with Maple V provides an introduction and discussion of topics typically covered in an undergraduate course in ordinary differential equations as well as some supplementary topics such as Laplace transforms, Fourier series, and partial differential equations. It also illustrates how Maple V is used to enhance the study of differential equations not only by eliminating the computational difficulties, but also by overcoming the visual limitations associated with the solutions of differential equations. The book contains chapters that present differential equations and illustrate how Maple V can be used to solve some typical problems. The text covers topics on differential equations such as first-order ordinary differential equations, higher order differential equations, power series solutions of ordinary differential equations, the Laplace Transform, systems of ordinary differential equations, and Fourier Series and applications to partial differential equations. Applications of these topics are also provided. Engineers, computer scientists, physical scientists, mathematicians, business professionals, and students will find the book useful.