REGRESSION MODELING STRATEGIES WITH APPLICATIONS TO LINEAR MODELS LOGISTIC AND ORDINAL REGRESSION AND SURVIVAL ANALYSIS SPRINGER SERIES IN STATISTICS

Download Regression Modeling Strategies With Applications To Linear Models Logistic And Ordinal Regression And Survival Analysis Springer Series In Statistics ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to REGRESSION MODELING STRATEGIES WITH APPLICATIONS TO LINEAR MODELS LOGISTIC AND ORDINAL REGRESSION AND SURVIVAL ANALYSIS SPRINGER SERIES IN STATISTICS book pdf for free now.

Regression Modeling Strategies

Author : Frank Harrell
ISBN : 9783319194257
Genre : Mathematics
File Size : 48.60 MB
Format : PDF, ePub
Download : 734
Read : 608

This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. The reader will gain a keen understanding of predictive accuracy and the harm of categorizing continuous predictors or outcomes. This text realistically deals with model uncertainty and its effects on inference, to achieve "safe data mining." It also presents many graphical methods for communicating complex regression models to non-statisticians. Regression Modeling Strategies presents full-scale case studies of non-trivial datasets instead of over-simplified illustrations of each method. These case studies use freely available R functions that make the multiple imputation, model building, validation and interpretation tasks described in the book relatively easy to do. Most of the methods in this text apply to all regression models, but special emphasis is given to multiple regression using generalized least squares for longitudinal data, the binary logistic model, models for ordinal responses, parametric survival regression models and the Cox semi parametric survival model. A new emphasis is given to the robust analysis of continuous dependent variables using ordinal regression. As in the first edition, this text is intended for Masters' or Ph.D. level graduate students who have had a general introductory probability and statistics course and who are well versed in ordinary multiple regression and intermediate algebra. The book will also serve as a reference for data analysts and statistical methodologists, as it contains an up-to-date survey and bibliography of modern statistical modeling techniques. Examples used in the text mostly come from biomedical research, but the methods are applicable anywhere predictive models ("analytics") are useful, including economics, epidemiology, sociology, psychology, engineering and marketing.
Category: Mathematics

Regression Modeling Strategies

Author : Frank Harrell
ISBN : 9781475734621
Genre : Mathematics
File Size : 24.33 MB
Format : PDF, Docs
Download : 367
Read : 194

Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".
Category: Mathematics

Regression Modeling Strategies

Author : Frank E. Harrell
ISBN : 0387952322
Genre : Computers
File Size : 40.60 MB
Format : PDF, ePub, Docs
Download : 579
Read : 314

The book will serve as a reference for data analysts and statistical methodologists.
Category: Computers

Modeling Discrete Time To Event Data

Author : Gerhard Tutz
ISBN : 9783319281582
Genre : Mathematics
File Size : 84.42 MB
Format : PDF
Download : 418
Read : 1137

This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book.
Category: Mathematics

Applied Survival Analysis Using R

Author : Dirk F. Moore
ISBN : 9783319312453
Genre : Medical
File Size : 71.95 MB
Format : PDF, Kindle
Download : 188
Read : 294

Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics near the end and in the appendices. A background in basic linear regression and categorical data analysis, as well as a basic knowledge of calculus and the R system, will help the reader to fully appreciate the information presented. Examples are simple and straightforward while still illustrating key points, shedding light on the application of survival analysis in a way that is useful for graduate students, researchers, and practitioners in biostatistics.
Category: Medical

Applied Predictive Modeling

Author : Max Kuhn
ISBN : 9781461468493
Genre : Medical
File Size : 46.14 MB
Format : PDF, Docs
Download : 330
Read : 702

Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Category: Medical

Modeling Survival Data Extending The Cox Model

Author : Terry M. Therneau
ISBN : 9781475732948
Genre : Mathematics
File Size : 31.79 MB
Format : PDF, ePub
Download : 287
Read : 151

This book is for statistical practitioners, particularly those who design and analyze studies for survival and event history data. Building on recent developments motivated by counting process and martingale theory, it shows the reader how to extend the Cox model to analyze multiple/correlated event data using marginal and random effects. The focus is on actual data examples, the analysis and interpretation of results, and computation. The book shows how these new methods can be implemented in SAS and S-Plus, including computer code, worked examples, and data sets.
Category: Mathematics

Regression Methods In Biostatistics

Author : Eric Vittinghoff
ISBN : 9781461413530
Genre : Medical
File Size : 46.55 MB
Format : PDF, ePub, Mobi
Download : 648
Read : 938

This new book provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics: linear models for continuous outcomes, logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for longitudinal and hierarchical outcomes, and generalized linear models for counts and other outcomes. Treating these topics together takes advantage of all they have in common. The authors point out the many-shared elements in the methods they present for selecting, estimating, checking, and interpreting each of these models. They also show that these regression methods deal with confounding, mediation, and interaction of causal effects in essentially the same way. The examples, analyzed using Stata, are drawn from the biomedical context but generalize to other areas of application. While a first course in statistics is assumed, a chapter reviewing basic statistical methods is included. Some advanced topics are covered but the presentation remains intuitive. A brief introduction to regression analysis of complex surveys and notes for further reading are provided.
Category: Medical

Analysis Of Ordinal Categorical Data

Author : Alan Agresti
ISBN : 9781118209998
Genre : Mathematics
File Size : 49.40 MB
Format : PDF, ePub
Download : 323
Read : 522

Statistical science’s first coordinated manual of methods for analyzing ordered categorical data, now fully revised and updated, continues to present applications and case studies in fields as diverse as sociology, public health, ecology, marketing, and pharmacy. Analysis of Ordinal Categorical Data, Second Edition provides an introduction to basic descriptive and inferential methods for categorical data, giving thorough coverage of new developments and recent methods. Special emphasis is placed on interpretation and application of methods including an integrated comparison of the available strategies for analyzing ordinal data. Practitioners of statistics in government, industry (particularly pharmaceutical), and academia will want this new edition.
Category: Mathematics

Statistical Modeling For Biomedical Researchers

Author : William D. Dupont
ISBN : 9781139643818
Genre : Medical
File Size : 32.35 MB
Format : PDF, Kindle
Download : 976
Read : 1069

The second edition of this standard text guides biomedical researchers in the selection and use of advanced statistical methods and the presentation of results to clinical colleagues. It assumes no knowledge of mathematics beyond high school level and is accessible to anyone with an introductory background in statistics. The Stata statistical software package is again used to perform the analyses, this time employing the much improved version 10 with its intuitive point and click as well as character-based commands. Topics covered include linear, logistic and Poisson regression, survival analysis, fixed-effects analysis of variance, and repeated-measure analysis of variance. Restricted cubic splines are used to model non-linear relationships. Each method is introduced in its simplest form and then extended to cover more complex situations. An appendix will help the reader select the most appropriate statistical methods for their data. The text makes extensive use of real data sets available at http://biostat.mc.vanderbilt.edu/dupontwd/wddtext/.
Category: Medical