REAL MATHEMATICAL ANALYSIS UNDERGRADUATE TEXTS IN MATHEMATICS

Download Real Mathematical Analysis Undergraduate Texts In Mathematics ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to REAL MATHEMATICAL ANALYSIS UNDERGRADUATE TEXTS IN MATHEMATICS book pdf for free now.

Author : Charles Chapman Pugh
ISBN : 9780387216843
Genre : Mathematics
File Size : 41.60 MB
Format : PDF, ePub, Mobi
Download : 123
Read : 993

Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.

Author : Stephen Abbott
ISBN : 9780387215068
Genre : Mathematics
File Size : 29.63 MB
Format : PDF, Kindle
Download : 680
Read : 1240

This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.

Author : Andrew Browder
ISBN : 9781461207153
Genre : Mathematics
File Size : 89.43 MB
Format : PDF, Mobi
Download : 309
Read : 1322

Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

Intended for an honors calculus course or for an introduction to analysis, this is an ideal text for undergraduate majors since it covers rigorous analysis, computational dexterity, and a breadth of applications. The book contains many remarkable features: * complete avoidance of /epsilon-/delta arguments by using sequences instead * definition of the integral as the area under the graph, while area is defined for every subset of the plane * complete avoidance of complex numbers * heavy emphasis on computational problems * applications from many parts of analysis, e.g. convex conjugates, Cantor set, continued fractions, Bessel functions, the zeta functions, and many more * 344 problems with solutions in the back of the book.

Author : Serge Lang
ISBN : 9781475718010
Genre : Mathematics
File Size : 74.82 MB
Format : PDF, Mobi
Download : 856
Read : 959

The present volume is a text designed for a first course in analysis. Although it is logically self-contained, it presupposes the mathematical maturity acquired by students who will ordinarily have had two years of calculus. When used in this context, most of the first part can be omitted, or reviewed extremely rapidly, or left to the students to read by themselves. The course can proceed immediately into Part Two after covering Chapters o and 1. However, the techniques of Part One are precisely those which are not emphasized in elementary calculus courses, since they are regarded as too sophisticated. The context of a third-year course is the first time that they are given proper emphasis, and thus it is important that Part One be thoroughly mastered. Emphasis has shifted from computational aspects of calculus to theoretical aspects: proofs for theorems concerning continuous 2 functions; sketching curves like x e-X, x log x, xlix which are usually regarded as too difficult for the more elementary courses; and other similar matters.

Author : Asuman G. Aksoy
ISBN : 9781441912961
Genre : Mathematics
File Size : 46.5 MB
Format : PDF, Kindle
Download : 295
Read : 200

Education is an admirable thing, but it is well to remember from time to time that nothing worth knowing can be taught. Oscar Wilde, “The Critic as Artist,” 1890. Analysis is a profound subject; it is neither easy to understand nor summarize. However, Real Analysis can be discovered by solving problems. This book aims to give independent students the opportunity to discover Real Analysis by themselves through problem solving. ThedepthandcomplexityofthetheoryofAnalysiscanbeappreciatedbytakingaglimpseatits developmental history. Although Analysis was conceived in the 17th century during the Scienti?c Revolution, it has taken nearly two hundred years to establish its theoretical basis. Kepler, Galileo, Descartes, Fermat, Newton and Leibniz were among those who contributed to its genesis. Deep conceptual changes in Analysis were brought about in the 19th century by Cauchy and Weierstrass. Furthermore, modern concepts such as open and closed sets were introduced in the 1900s. Today nearly every undergraduate mathematics program requires at least one semester of Real Analysis. Often, students consider this course to be the most challenging or even intimidating of all their mathematics major requirements. The primary goal of this book is to alleviate those concerns by systematically solving the problems related to the core concepts of most analysis courses. In doing so, we hope that learning analysis becomes less taxing and thereby more satisfying.

Author : Paul J. Sally, Jr.
ISBN : 9780821891414
Genre : Mathematics
File Size : 57.65 MB
Format : PDF, ePub, Docs
Download : 972
Read : 773

This is a textbook for a course in Honors Analysis (for freshman/sophomore undergraduates) or Real Analysis (for junior/senior undergraduates) or Analysis-I (beginning graduates). It is intended for students who completed a course in ``AP Calculus'', possibly followed by a routine course in multivariable calculus and a computational course in linear algebra. There are three features that distinguish this book from many other books of a similar nature and which are important for the use of this book as a text. The first, and most important, feature is the collection of exercises. These are spread throughout the chapters and should be regarded as an essential component of the student's learning. Some of these exercises comprise a routine follow-up to the material, while others challenge the student's understanding more deeply. The second feature is the set of independent projects presented at the end of each chapter. These projects supplement the content studied in their respective chapters. They can be used to expand the student's knowledge and understanding or as an opportunity to conduct a seminar in Inquiry Based Learning in which the students present the material to their class. The third really important feature is a series of challenge problems that increase in impossibility as the chapters progress.

Author : L. Lovász
ISBN : 0387955852
Genre : Mathematics
File Size : 66.49 MB
Format : PDF, ePub, Docs
Download : 546
Read : 1171

Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.

Mathematical analysis is fundamental to the undergraduate curriculum not only because it is the stepping stone for the study of advanced analysis, but also because of its applications to other branches of mathematics, physics, and engineering at both the undergraduate and graduate levels. This self-contained textbook consists of eleven chapters, which are further divided into sections and subsections. Each section includes a careful selection of special topics covered that will serve to illustrate the scope and power of various methods in real analysis. The exposition is developed with thorough explanations, motivating examples, exercises, and illustrations conveying geometric intuition in a pleasant and informal style to help readers grasp difficult concepts. Foundations of Mathematical Analysis is intended for undergraduate students and beginning graduate students interested in a fundamental introduction to the subject. It may be used in the classroom or as a self-study guide without any required prerequisites.