QUADRATIC FORMS LINEAR ALGEBRAIC GROUPS AND COHOMOLOGY

Download Quadratic Forms Linear Algebraic Groups And Cohomology ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to QUADRATIC FORMS LINEAR ALGEBRAIC GROUPS AND COHOMOLOGY book pdf for free now.

Author : Eva Bayer-Fluckiger
ISBN : 9780821827796
Genre : Mathematics
File Size : 34.83 MB
Format : PDF, Mobi
Download : 597
Read : 1203

This volume outlines the proceedings of the conference on ``Quadratic Forms and Their Applications'' held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.

Author : Carl R. Riehm
ISBN : 0821860089
Genre : Mathematics
File Size : 31.51 MB
Format : PDF, ePub, Mobi
Download : 731
Read : 714

This book contains the proceedings of the 1983 Seminar on Quadratic and Hermitian Forms held at McMaster University, July 1983. Between 1945 and 1965, most of the work in quadratic (and hermitian) forms took place in arithmetic theory (M. Eichler, M. Kneser, O. T. O'Meara). In the mid-sixties, the algebraic theory of quadratic forms experienced a reawakening with the fundamental discoveries of A. Pfister. More recently, there have been signs that the subject, in both its algebraic and arithmetic aspects, is once more in a state of change, reaching out into new and different areas. Since the advent of surgery theory in the late sixties, that subject has been one of the principal users of the theory of quadratic and hermitian forms. Therefore, hermitian $K$-theory was included within the scope of the conference to further the contact between its practitioners and those in quadratic forms.

This volume presents a collection of articles that are based on talks delivered at the International Conference on the Algebraic and Arithmetic Theory of Quadratic Forms held in Frutillar, Chile in December 2007. The theory of quadratic forms is closely connected with a broad spectrum of areas in algebra and number theory. The articles in this volume deal mainly with questions from the algebraic, geometric, arithmetic, and analytic theory of quadratic forms, and related questions in algebraic group theory and algebraic geometry.

This monograph is an exposition of the theory of central simple algebras with involution, in relation to linear algebraic groups. It provides the algebra-theoretic foundations for much of the recent work on linear algebraic groups over arbitrary fields. Involutions are viewed as twisted forms of (hermitian) quadrics, leading to new developments on the model of the algebraic theory of quadratic forms. In addition to classical groups, phenomena related to triality are also discussed, as well as groups of type $F_4$ or $G_2$ arising from exceptional Jordan or composition algebras. Several results and notions appear here for the first time, notably the discriminant algebra of an algebra with unitary involution and the algebra-theoretic counterpart to linear groups of type $D_4$. This volume also contains a Bibliography and Index. Features: original material not in print elsewhere a comprehensive discussion of algebra-theoretic and group-theoretic aspects extensive notes that give historical perspective and a survey on the literature rational methods that allow possible generalization to more general base rings

Author : Michel Waldschmidt
ISBN : 3540667857
Genre : Mathematics
File Size : 44.58 MB
Format : PDF
Download : 913
Read : 712

The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.

Author : Vladimir Platonov
ISBN : 0080874592
Genre : Mathematics
File Size : 54.42 MB
Format : PDF, Docs
Download : 310
Read : 951

This milestone work on the arithmetic theory of linear algebraic groups is now available in English for the first time. Algebraic Groups and Number Theory provides the first systematic exposition in mathematical literature of the junction of group theory, algebraic geometry, and number theory. The exposition of the topic is built on a synthesis of methods from algebraic geometry, number theory, analysis, and topology, and the result is a systematic overview ofalmost all of the major results of the arithmetic theory of algebraic groups obtained to date.

Contributions to Algebra: A Collection of Papers Dedicated to Ellis Kolchin provides information pertinent to commutative algebra, linear algebraic group theory, and differential algebra. This book covers a variety of topics, including complex analysis, logic, K-theory, stochastic matrices, and differential geometry. Organized into 29 chapters, this book begins with an overview of the influence that Ellis Kolchin's work on the Galois theory of differential fields has had on the development of differential equations. This text then discusses the background model theoretic work in differential algebra and discusses the notion of model completions. Other chapters consider some properties of differential closures and some immediate consequences and include extensive notes with proofs. This book discusses as well the problems in finite group theory in finding the complex finite projective groups of a given degree. The final chapter deals with the finite forms of quasi-simple algebraic groups. This book is a valuable resource for students.

This volume is concerned with algebraic invariants, such as the Stiefel-Whitney classes of quadratic forms (with values in Galois cohomology mod 2) and the trace form of etale algebras (with values in the Witt ring). The invariants are analogues for Galois cohomology of the characteristic classes of topology. Historically, one of the first examples of cohomological invariants of the type considered here was the Hasse-Witt invariant of quadratic forms. The first part classifies such invariants in several cases. A principal tool is the notion of versal torsor, which is an analogue of the universal bundle in topology. The second part gives Rost's determination of the invariants of $G$-torsors with values in $H^3(\mathbb{Q}/\mathbb{Z}(2))$, when $G$ is a semisimple, simply connected, linear group. This part gives detailed proofs of the existence and basic properties of the Rost invariant. This is the first time that most of this material appears in print.