PROBABILITY AND STATISTICS FOR COMPUTER SCIENTISTS SECOND EDITION

Download Probability And Statistics For Computer Scientists Second Edition ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to PROBABILITY AND STATISTICS FOR COMPUTER SCIENTISTS SECOND EDITION book pdf for free now.

Author : Michael Baron
ISBN : 9781498760607
Genre : Mathematics
File Size : 55.34 MB
Format : PDF, ePub
Download : 682
Read : 1074

Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises.

Author : Kishor S. Trivedi
ISBN : 9781119314202
Genre : Computers
File Size : 75.39 MB
Format : PDF, Mobi
Download : 674
Read : 1182

An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications Second edition now also available in Paperback. This updated and revised edition of the popular classic first edition relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Author : James L. Johnson
ISBN : 9781118165966
Genre : Mathematics
File Size : 37.55 MB
Format : PDF, ePub, Docs
Download : 755
Read : 1080

Comprehensive and thorough development of both probability and statistics for serious computer scientists; goal-oriented: "to present the mathematical analysis underlying probability results" Special emphases on simulation and discrete decision theory Mathematically-rich, but self-contained text, at a gentle pace Review of calculus and linear algebra in an appendix Mathematical interludes (in each chapter) which examine mathematical techniques in the context of probabilistic or statistical importance Numerous section exercises, summaries, historical notes, and Further Readings for reinforcement of content

Author : Arnold O. Allen
ISBN : 9780080571058
Genre : Mathematics
File Size : 37.58 MB
Format : PDF, Kindle
Download : 893
Read : 846

This is a textbook on applied probability and statistics with computer science applications for students at the upper undergraduate level. It may also be used as a self study book for the practicing computer science professional. The successful first edition of this book proved extremely useful to students who need to use probability, statistics and queueing theory to solve problems in other fields, such as engineering, physics, operations research, and management science. The book has also been successfully used for courses in queueing theory for operations research students. This second edition includes a new chapter on regression as well as more than twice as many exercises at the end of each chapter. While the emphasis is the same as in the first edition, this new book makes more extensive use of available personal computer software, such as Minitab and Mathematica.

Author : David Forsyth
ISBN : 9783319644103
Genre : Computers
File Size : 90.38 MB
Format : PDF
Download : 965
Read : 653

This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning. With careful treatment of topics that fill the curricular needs for the course, Probability and Statistics for Computer Science features: • A treatment of random variables and expectations dealing primarily with the discrete case. • A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains. • A clear but crisp account of simple point inference strategies (maximum likelihood; Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing. • A chapter dealing with classification, explaining why it’s useful; how to train SVM classifiers with stochastic gradient descent; and how to use implementations of more advanced methods such as random forests and nearest neighbors. • A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems. • A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis. • A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals. Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know. Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides.

Author : Jane Horgan
ISBN : 9781118165959
Genre : Mathematics
File Size : 82.83 MB
Format : PDF, ePub, Mobi
Download : 861
Read : 521

A Complete Introduction to probability AND its computer Science Applications USING R Probability with R serves as a comprehensive and introductory book on probability with an emphasis on computing-related applications. Real examples show how probability can be used in practical situations, and the freely available and downloadable statistical programming language R illustrates and clarifies the book's main principles. Promoting a simulation- and experimentation-driven methodology, this book highlights the relationship between probability and computing in five distinctive parts: The R Language presents the essentials of the R language, including key procedures for summarizing and building graphical displays of statistical data. Fundamentals of Probability provides the foundations of the basic concepts of probability and moves into applications in computing. Topical coverage includes conditional probability, Bayes' theorem, system reliability, and the development of the main laws and properties of probability. Discrete Distributions addresses discrete random variables and their density and distribution functions as well as the properties of expectation. The geometric, binomial, hypergeometric, and Poisson distributions are also discussed and used to develop sampling inspection schemes. Continuous Distributions introduces continuous variables by examining the waiting time between Poisson occurrences. The exponential distribution and its applications to reliability are investigated, and the Markov property is illustrated via simulation in R. The normal distribution is examined and applied to statistical process control. Tailing Off delves into the use of Markov and Chebyshev inequalities as tools for estimating tail probabilities with limited information on the random variable. Numerous exercises and projects are provided in each chapter, many of which require the use of R to perform routine calculations and conduct experiments with simulated data. The author directs readers to the appropriate Web-based resources for installing the R software package and also supplies the essential commands for working in the R workspace. A related Web site features an active appendix as well as a forum for readers to share findings, thoughts, and ideas. With its accessible and hands-on approach, Probability with R is an ideal book for a first course in probability at the upper-undergraduate and graduate levels for readers with a background in computer science, engineering, and the general sciences. It also serves as a valuable reference for computing professionals who would like to further understand the relevance of probability in their areas of practice.

Author : Allen B. Downey
ISBN : 9781491907375
Genre : Computers
File Size : 21.10 MB
Format : PDF, ePub
Download : 968
Read : 712

If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. By working with a single case study throughout this thoroughly revised book, you’ll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You’ll explore distributions, rules of probability, visualization, and many other tools and concepts. New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries. Develop an understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Import data from most sources with Python, rather than rely on data that’s cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data

Author : Henry C. Tuckwell
ISBN : 9781351452953
Genre : Mathematics
File Size : 75.78 MB
Format : PDF, Mobi
Download : 244
Read : 933

This book provides a clear and straightforward introduction to applications of probability theory with examples given in the biological sciences and engineering. The first chapter contains a summary of basic probability theory. Chapters two to five deal with random variables and their applications. Topics covered include geometric probability, estimation of animal and plant populations, reliability theory and computer simulation. Chapter six contains a lucid account of the convergence of sequences of random variables, with emphasis on the central limit theorem and the weak law of numbers. The next four chapters introduce random processes, including random walks and Markov chains illustrated by examples in population genetics and population growth. This edition also includes two chapters which introduce, in a manifestly readable fashion, the topic of stochastic differential equations and their applications.

Author : Wendy L. Martinez
ISBN : 9781466592742
Genre : Business & Economics
File Size : 66.16 MB
Format : PDF, Mobi
Download : 620
Read : 1101

A Strong Practical Focus on Applications and Algorithms Computational Statistics Handbook with MATLAB®, Third Edition covers today’s most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the implementation of the methods. New to the Third Edition This third edition is updated with the latest version of MATLAB and the corresponding version of the Statistics and Machine Learning Toolbox. It also incorporates new sections on the nearest neighbor classifier, support vector machines, model checking and regularization, partial least squares regression, and multivariate adaptive regression splines. Web Resource The authors include algorithmic descriptions of the procedures as well as examples that illustrate the use of algorithms in data analysis. The MATLAB code, examples, and data sets are available online.

Author : Géza Schay
ISBN : 9783319306209
Genre : Mathematics
File Size : 55.16 MB
Format : PDF, Docs
Download : 688
Read : 875

Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises“/p> Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications. Review of the first edition: This textbook is a classical and well-written introduction to probability theory and statistics. ... the book is written ‘for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.’ ... Each new concept is clearly explained and is followed by many detailed examples. ... numerous examples of calculations are given and proofs are well-detailed." (Sophie Lemaire, Mathematical Reviews, Issue 2008 m)