PRIMER TO ANALYSIS OF GENOMIC DATA USING R USE R

Download Primer To Analysis Of Genomic Data Using R Use R ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to PRIMER TO ANALYSIS OF GENOMIC DATA USING R USE R book pdf for free now.

Primer To Analysis Of Genomic Data Using R

Author : Cedric Gondro
ISBN : 9783319144757
Genre : Medical
File Size : 51.27 MB
Format : PDF, Kindle
Download : 617
Read : 658

Through this book, researchers and students will learn to use R for analysis of large-scale genomic data and how to create routines to automate analytical steps. The philosophy behind the book is to start with real world raw datasets and perform all the analytical steps needed to reach final results. Though theory plays an important role, this is a practical book for graduate and undergraduate courses in bioinformatics and genomic analysis or for use in lab sessions. How to handle and manage high-throughput genomic data, create automated workflows and speed up analyses in R is also taught. A wide range of R packages useful for working with genomic data are illustrated with practical examples. The key topics covered are association studies, genomic prediction, estimation of population genetic parameters and diversity, gene expression analysis, functional annotation of results using publically available databases and how to work efficiently in R with large genomic datasets. Important principles are demonstrated and illustrated through engaging examples which invite the reader to work with the provided datasets. Some methods that are discussed in this volume include: signatures of selection, population parameters (LD, FST, FIS, etc); use of a genomic relationship matrix for population diversity studies; use of SNP data for parentage testing; snpBLUP and gBLUP for genomic prediction. Step-by-step, all the R code required for a genome-wide association study is shown: starting from raw SNP data, how to build databases to handle and manage the data, quality control and filtering measures, association testing and evaluation of results, through to identification and functional annotation of candidate genes. Similarly, gene expression analyses are shown using microarray and RNAseq data. At a time when genomic data is decidedly big, the skills from this book are critical. In recent years R has become the de facto tool for analysis of gene expression data, in addition to its prominent role in analysis of genomic data. Benefits to using R include the integrated development environment for analysis, flexibility and control of the analytic workflow. Included topics are core components of advanced undergraduate and graduate classes in bioinformatics, genomics and statistical genetics. This book is also designed to be used by students in computer science and statistics who want to learn the practical aspects of genomic analysis without delving into algorithmic details. The datasets used throughout the book may be downloaded from the publisher’s website./p
Category: Medical

R Programming For Bioinformatics

Author : Robert Gentleman
ISBN : 1420063685
Genre : Mathematics
File Size : 54.30 MB
Format : PDF, ePub, Docs
Download : 487
Read : 1255

Due to its data handling and modeling capabilities as well as its flexibility, R is becoming the most widely used software in bioinformatics. R Programming for Bioinformatics explores the programming skills needed to use this software tool for the solution of bioinformatics and computational biology problems. Drawing on the author’s first-hand experiences as an expert in R, the book begins with coverage on the general properties of the R language, several unique programming aspects of R, and object-oriented programming in R. It presents methods for data input and output as well as database interactions. The author also examines different facets of string handling and manipulations, discusses the interfacing of R with other languages, and describes how to write software packages. He concludes with a discussion on the debugging and profiling of R code. With numerous examples and exercises, this practical guide focuses on developing R programming skills in order to tackle problems encountered in bioinformatics and computational biology.
Category: Mathematics

Bioinformatics And Computational Biology Solutions Using R And Bioconductor

Author : Robert Gentleman
ISBN : 9780387293622
Genre : Computers
File Size : 44.34 MB
Format : PDF, Mobi
Download : 401
Read : 1144

Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.
Category: Computers

Applied Statistical Genetics With R

Author : Andrea S. Foulkes
ISBN : 9780387895543
Genre : Science
File Size : 33.87 MB
Format : PDF
Download : 576
Read : 1123

Statistical genetics has become a core course in many graduate programs in public health and medicine. This book presents fundamental concepts and principles in this emerging field at a level that is accessible to students and researchers with a first course in biostatistics. Extensive examples are provided using publicly available data and the open source, statistical computing environment, R.
Category: Science

Analysis Of Phylogenetics And Evolution With R

Author : Emmanuel Paradis
ISBN : 9781461417439
Genre : Science
File Size : 28.11 MB
Format : PDF, ePub
Download : 788
Read : 453

The increasing availability of molecular and genetic databases coupled with the growing power of computers gives biologists opportunities to address new issues, such as the patterns of molecular evolution, and re-assess old ones, such as the role of adaptation in species diversification. In the second edition, the book continues to integrate a wide variety of data analysis methods into a single and flexible interface: the R language. This open source language is available for a wide range of computer systems and has been adopted as a computational environment by many authors of statistical software. Adopting R as a main tool for phylogenetic analyses will ease the workflow in biologists' data analyses, ensure greater scientific repeatability, and enhance the exchange of ideas and methodological developments. The second edition is completed updated, covering the full gamut of R packages for this area that have been introduced to the market since its previous publication five years ago. There is also a new chapter on the simulation of evolutionary data. Graduate students and researchers in evolutionary biology can use this book as a reference for data analyses, whereas researchers in bioinformatics interested in evolutionary analyses will learn how to implement these methods in R. The book starts with a presentation of different R packages and gives a short introduction to R for phylogeneticists unfamiliar with this language. The basic phylogenetic topics are covered: manipulation of phylogenetic data, phylogeny estimation, tree drawing, phylogenetic comparative methods, and estimation of ancestral characters. The chapter on tree drawing uses R's powerful graphical environment. A section deals with the analysis of diversification with phylogenies, one of the author's favorite research topics. The last chapter is devoted to the development of phylogenetic methods with R and interfaces with other languages (C and C++). Some exercises conclude these chapters.
Category: Science

Bioconductor Case Studies

Author : Florian Hahne
ISBN : 0387772405
Genre : Science
File Size : 67.20 MB
Format : PDF, Kindle
Download : 513
Read : 1295

Bioconductor software has become a standard tool for the analysis and comprehension of data from high-throughput genomics experiments. Its application spans a broad field of technologies used in contemporary molecular biology. In this volume, the authors present a collection of cases to apply Bioconductor tools in the analysis of microarray gene expression data. Topics covered include: (1) import and preprocessing of data from various sources; (2) statistical modeling of differential gene expression; (3) biological metadata; (4) application of graphs and graph rendering; (5) machine learning for clustering and classification problems; (6) gene set enrichment analysis. Each chapter of this book describes an analysis of real data using hands-on example driven approaches. Short exercises help in the learning process and invite more advanced considerations of key topics. The book is a dynamic document. All the code shown can be executed on a local computer, and readers are able to reproduce every computation, figure, and table.
Category: Science

Molecular Data Analysis Using R

Author : Csaba Ortutay
ISBN : 9781119165026
Genre : Medical
File Size : 25.49 MB
Format : PDF, ePub, Docs
Download : 268
Read : 395

This book addresses the difficulties experienced by wet lab researchers with the statistical analysis of molecular biology related data. The authors explain how to use R and Bioconductor for the analysis of experimental data in the field of molecular biology. The content is based upon two university courses for bioinformatics and experimental biology students (Biological Data Analysis with R and High-throughput Data Analysis with R). The material is divided into chapters based upon the experimental methods used in the laboratories. Key features include: • Broad appeal--the authors target their material to researchers in several levels, ensuring that the basics are always covered. • First book to explain how to use R and Bioconductor for the analysis of several types of experimental data in the field of molecular biology. • Focuses on R and Bioconductor, which are widely used for data analysis. One great benefit of R and Bioconductor is that there is a vast user community and very active discussion in place, in addition to the practice of sharing codes. Further, R is the platform for implementing new analysis approaches, therefore novel methods are available early for R users. About the Authors Csaba Ortutay is a bioinformatician from Finland who has taught several bioinformatics courses at different European universities (Finland, Ireland, and Hungary) for over a decade. He is also active as a researcher publishing in the field of computational immunology. Zsuzsanna Ortutay is a molecular immunologist at the University of Tampere, Finland, frequently utilizing diverse molecular lab methods.
Category: Medical

Computational Methods For Next Generation Sequencing Data Analysis

Author : Ion Mandoiu
ISBN : 9781119272175
Genre : Computers
File Size : 27.45 MB
Format : PDF
Download : 373
Read : 974

Introduces readers to core algorithmic techniques for next-generation sequencing (NGS) data analysis and discusses a wide range of computational techniques and applications This book provides an in-depth survey of some of the recent developments in NGS and discusses mathematical and computational challenges in various application areas of NGS technologies. The 18 chapters featured in this book have been authored by bioinformatics experts and represent the latest work in leading labs actively contributing to the fast-growing field of NGS. The book is divided into four parts: Part I focuses on computing and experimental infrastructure for NGS analysis, including chapters on cloud computing, modular pipelines for metabolic pathway reconstruction, pooling strategies for massive viral sequencing, and high-fidelity sequencing protocols. Part II concentrates on analysis of DNA sequencing data, covering the classic scaffolding problem, detection of genomic variants, including insertions and deletions, and analysis of DNA methylation sequencing data. Part III is devoted to analysis of RNA-seq data. This part discusses algorithms and compares software tools for transcriptome assembly along with methods for detection of alternative splicing and tools for transcriptome quantification and differential expression analysis. Part IV explores computational tools for NGS applications in microbiomics, including a discussion on error correction of NGS reads from viral populations, methods for viral quasispecies reconstruction, and a survey of state-of-the-art methods and future trends in microbiome analysis. Computational Methods for Next Generation Sequencing Data Analysis: Reviews computational techniques such as new combinatorial optimization methods, data structures, high performance computing, machine learning, and inference algorithms Discusses the mathematical and computational challenges in NGS technologies Covers NGS error correction, de novo genome transcriptome assembly, variant detection from NGS reads, and more This text is a reference for biomedical professionals interested in expanding their knowledge of computational techniques for NGS data analysis. The book is also useful for graduate and post-graduate students in bioinformatics.
Category: Computers

Rna Seq Data Analysis

Author : Eija Korpelainen
ISBN : 9781466595019
Genre : Mathematics
File Size : 80.56 MB
Format : PDF, ePub
Download : 373
Read : 555

The State of the Art in Transcriptome Analysis RNA sequencing (RNA-seq) data offers unprecedented information about the transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. RNA-seq Data Analysis: A Practical Approach enables researchers to examine differential expression at gene, exon, and transcript levels and to discover novel genes, transcripts, and whole transcriptomes. Balanced Coverage of Theory and Practice Each chapter starts with theoretical background, followed by descriptions of relevant analysis tools and practical examples. Accessible to both bioinformaticians and nonprogramming wet lab scientists, the examples illustrate the use of command-line tools, R, and other open source tools, such as the graphical Chipster software. The Tools and Methods to Get Started in Your Lab Taking readers through the whole data analysis workflow, this self-contained guide provides a detailed overview of the main RNA-seq data analysis methods and explains how to use them in practice. It is suitable for researchers from a wide variety of backgrounds, including biology, medicine, genetics, and computer science. The book can also be used in a graduate or advanced undergraduate course.
Category: Mathematics

The Fundamentals Of Modern Statistical Genetics

Author : Nan M. Laird
ISBN : 1441973389
Genre : Medical
File Size : 64.62 MB
Format : PDF, ePub, Mobi
Download : 504
Read : 1115

This book covers the statistical models and methods that are used to understand human genetics, following the historical and recent developments of human genetics. Starting with Mendel’s first experiments to genome-wide association studies, the book describes how genetic information can be incorporated into statistical models to discover disease genes. All commonly used approaches in statistical genetics (e.g. aggregation analysis, segregation, linkage analysis, etc), are used, but the focus of the book is modern approaches to association analysis. Numerous examples illustrate key points throughout the text, both of Mendelian and complex genetic disorders. The intended audience is statisticians, biostatisticians, epidemiologists and quantitatively- oriented geneticists and health scientists wanting to learn about statistical methods for genetic analysis, whether to better analyze genetic data, or to pursue research in methodology. A background in intermediate level statistical methods is required. The authors include few mathematical derivations, and the exercises provide problems for students with a broad range of skill levels. No background in genetics is assumed.
Category: Medical