Download Peroxisomes And Their Key Role In Cellular Signaling And Metabolism 69 Subcellular Biochemistry ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to PEROXISOMES AND THEIR KEY ROLE IN CELLULAR SIGNALING AND METABOLISM 69 SUBCELLULAR BIOCHEMISTRY book pdf for free now.

Peroxisomes And Their Key Role In Cellular Signaling And Metabolism

Author : Luis A. del Rio
ISBN : 9789400768895
Genre : Medical
File Size : 64.77 MB
Format : PDF, ePub, Docs
Download : 907
Read : 255

Peroxisomes are a class of ubiquitous and dynamic single membrane-bounded cell organelles, devoid of DNA, with an essentially oxidative type of metabolism. In recent years it has become increasingly clear that peroxisomes are involved in a range of important cellular functions in almost all eukaryotic cells. In higher eukaryotes, including humans, peroxisomes catalyze ether phospholipids biosynthesis, fatty acid alpha-oxidation, glyoxylate detoxification, etc, and in humans peroxisomes are associated with several important genetic diseases. In plants, peroxisomes carry out the fatty acid beta-oxidation, photorespiration, metabolism of ROS, RNS and RSS, photomorphogenesis, biosynthesis of phytohormones, senescence, and defence against pathogens and herbivores. In recent years it has been postulated a possible contribution of peroxisomes to cellular signaling. In this volume an updated view of the capacity and function of peroxisomes from human, animal, fungal and plant origin as cell generators of different signal molecules involved in distinct processes of high physiological importance is presented.
Category: Medical

Nitric Oxide In Plants Metabolism And Role In Stress Physiology

Author : M. Nasir Khan
ISBN : 9783319067100
Genre : Science
File Size : 45.34 MB
Format : PDF
Download : 407
Read : 969

This book covers the key features of nitric oxide (NO) in plants. Comprising nine chapters, Part I highlights its metabolism and identification in plants. Part II, which consists of eight chapters, focuses on the chemical, physical and biochemical properties of the NO molecule and its derivatives; on its functional role and mode of action; and on its signaling and interaction with phytohormones, mineral nutrients, biomolecules, ions and ion channels in plants under abiotic stresses. Combining the expertise of leading researchers in the field, the book provides a concise overview of plant NO biology and offers a valuable reference work.
Category: Science

Molecular Machines Involved In Peroxisome Biogenesis And Maintenance

Author : Cecile Brocard
ISBN : 9783709117880
Genre : Science
File Size : 84.73 MB
Format : PDF, ePub, Docs
Download : 768
Read : 503

In eukaryotes, lipid metabolism requires the function of peroxisomes. These multitasking organelles are also part of species-specific pathways such as the glyoxylate cycle in yeast and plants or the synthesis of ether lipid in mammals. Proteins required for the biogenesis of peroxisomes typically assemble in large molecular complexes, which participate in membrane formation, protein transport, peroxisome duplication and - inheritance during cell division. Peroxisomal function is essential for life. Mutations in PEX genes, encoding for biogenesis factors, are often associated with lethal disorders. The association of peroxisomes with other organelles suggests an extensive participation in organellar crosstalk. This book represents a state-of-the-art review in the field of peroxisome research encompassing the cell and molecular biology of peroxisome biogenesis and its diseases, the protein complexes involved in this process and the modern technologies applied to study them. The book is intended for graduate students, researchers and lecturers in biochemistry, molecular and cell biology with a biomedical background.
Category: Science

Fungal Jewels Secondary Metabolites

Author : Nancy Keller
ISBN : 9782889451364
Genre :
File Size : 56.29 MB
Format : PDF, Docs
Download : 618
Read : 490

Fungal natural products are friends and foes of humans such as deleterious mycotoxins, cytotoxic, carcinogenic compounds or beneficial compounds such as antibiotics, fungicides, insecticides, antiviral and antitumor metabolites. Understanding fungal diversity and estimation of fungal species on our planet poses a great challenge to researchers. This complexity is further multiplied by secondary metabolite diversity of fungi, which requires interdisciplinary studies. It is extremely important to understand the fungal secondary metabolism to stop human, animal and plant diseases caused by fungi and harvest their valuable metabolites. Furthermore, many secondary metabolite gene clusters are silenced under laboratory conditions. It is vital to develop effective methods to activate those clusters in order to discover novel potent metabolites. This e-book is a compilation of original review articles contributed by leading fungal secondary metabolite researchers with a wide range of expertise. Important aspects of fungal secondary metabolism, including regulation, genome mining, evolution, synthetic biology and novel methods have been discussed. This book will be a great source to those people, who are interested in understanding overall structure, diversity and regulation of production of these tiny but precious chemicals.

Lipid Hydroperoxide Derived Modification Of Biomolecules

Author : Yoji Kato
ISBN : 9789400779204
Genre : Medical
File Size : 53.5 MB
Format : PDF, ePub, Mobi
Download : 346
Read : 417

Lipid peroxidation is an important cellular process which can lead to detrimental effects if it is not regulated efficiently. Lipid hydroperoxide is formed in an initial step of lipid peroxidation. Lipid hydroperoxide is also known as a potential source of singlet oxygen. Harmful aldehydes are formed when the lipid hydroperoxide is degraded. The formed aldehyde has high reactivity against thiol or amine moieties. Therefore, it could act as a signaling molecule, which might induce the changing of gears inside a cell. Recent studies have shown that lipid hydroperoxide or a slightly modified product of the lipid hydroperoxide reacts with biomolecules such as proteins and aminophospholipids, which leads to formation of amide-type adducts. Amide-type adducts could be one of markers for oxidative stress and could also be an important player in some diseases. In this book, the chemistry and biochemistry of lipid hydroperoxide along with their conjugates with biomolecules are described.
Category: Medical

Molecular Mechanisms And Physiological Significance Of Organelle Interactions And Cooperation

Author : Michael Schrader
ISBN : 9782889451043
Genre :
File Size : 83.85 MB
Format : PDF, Mobi
Download : 891
Read : 486

Eukaryotic cells contain distinct membrane-bound organelles, which compartmentalise cellular proteins to fulfil a variety of vital functions. Many organelles have long been regarded as isolated and static entities (e.g., peroxisomes, mitochondria, lipid droplets), but it is now evident that they display dynamic changes, interact with each other, share certain proteins and show metabolic cooperation and cross-talk. Despite great advances in the identification and characterisation of essential components and molecular mechanisms associated with the biogenesis and function of organelles, information on how organelles interact and are incorporated into metabolic pathways and signaling networks is just beginning to emerge. Organelle cooperation requires sophisticated targeting systems which regulate the proper distribution of shared proteins to more than one organelle. Organelle motility and membrane remodeling support organelle interaction and contact. This contact can be mediated by membrane proteins residing on different organelles which can serve as molecular tethers to physically link different organelles together. They can also contribute to the exchange of metabolites and ions, or act in the assembly of signaling platforms. In this regard organelle communication events have been associated with important cellular functions such as apoptosis, antiviral defense, organelle division/biogenesis, ROS metabolism and signaling, and various metabolic pathways such as breakdown of fatty acids or cholesterol biosynthesis. In this research topic we will focus on recent novel findings on the underlying molecular mechanisms and physiological significance of organelle interaction and cooperation with a particular focus on mitochondria, peroxisomes, endoplasmic reticulum, lysosomes and lipid droplets and their impact on the regulation of cellular homeostasis. Our understanding of how organelles physically interact and use cellular signaling systems to coordinate functional networks between each other is still in its infancy. Nevertheless recent discoveries of defined membrane structures such as the mitochondria-ER associated membranes (MAM) are revealing how membrane domains enriched in specific proteins transmit signals across organelle boundaries, allowing one organelle to influence the function of another. In addition to its role as a mediator between mitochondria and the ER, contacts between the MAM and peroxisomes contribute to antiviral signaling, and specialised regions of the ER are supposed to initiate peroxisome biogenesis, whereas intimate contacts between peroxisomes, lipid droplets and the ER mediate lipid metabolism. In line with these observations it is tempting to speculate that further physical contact sites between other organelles exist. Alternatively, novel regulated vesicle trafficking pathways between organelles (e.g., mitochondria to peroxisomes or lysosomes) have been discovered implying another mode of organelle communication. Identifying the key molecular players of such specialised membrane structures will be a prerequisite to understand how organelle communication is physically accomplished and will lead to the identification of new regulatory networks. In addition to the direct transmission of interorganellar information, cytosolic messenger systems (e.g., kinase/phosphatase systems or redox signaling) may contribute to the coordination of organelle functions. This research topic will integrate new findings from both modes of communication and will provide new perspectives for the functional significance of cross-talk among organelles. We would like to thank all the researchers who contributed their valuable work to this research topic. Furthermore, we are grateful to the reviewers and Associate Editors who contributed valuable comments and positive criticism to improve the contributions.

Reactive Oxygen Species In Plant Signaling

Author : Luis A. del Río
ISBN : 3642003907
Genre : Science
File Size : 50.57 MB
Format : PDF, ePub
Download : 429
Read : 1275

Oxygen (O ) appeared in significant amounts in the Earth’s atmosphere over 2. 2 2 billion years ago, largely due to the evolution of photosynthesis by cyanobacteria (Halliwell 2006). The O molecule is a free radical, as it has two impaired electrons 2 that have the same spin quantum number. This spin restriction makes O prefer to 2 accept its electrons one at a time, leading to the generation of the so-called reactive oxygen species (ROS). The chemical nature of these species dictates that they can create damage in cells. This has contributed to the creation of the “oxidative stress” concept; in this view, ROS are unavoidable toxic products of O metabolism and 2 aerobic organisms have evolved antioxidant defences to protect against this tox- ity (Halliwell 1981; Fridovich 1998). Indeed, even in present-day plants, which are full of antioxidants, much of the protein synthetic activity of chloroplasts is used to replace oxidatively damaged D1 and other proteins (Halliwell 2006). Yet, the use of the “oxidative stress” term implies that ROS exert their effects through indiscriminate widespread inactivation of cellular functions. In this context, ROS must not be able to react with lipids, proteins or nucleic acids in order to avoid any damage to vital cellular components. However, genetic evidence has suggested that, in planta, purely physicoche- cal damage may be more limited than previously thought (Foyer and Noctor 2005).
Category: Science

Regulated Proteolysis In Microorganisms

Author : David A Dougan
ISBN : 9789400759404
Genre : Medical
File Size : 52.54 MB
Format : PDF, Docs
Download : 987
Read : 972

This book contains an extensive collection of critical reviews, from leading researchers in the field of regulated protein degradation. It covers the role of regulated proteolysis in a range of microorganisms (from Gram positive, Gram negative and pathogenic bacteria to Archaea and the Baker’s yeast Saccharomyces cerevisiae).
Category: Medical

Subcellular Biochemistry

Author : Donald B. Roodyn
ISBN : 9781461579489
Genre : Science
File Size : 61.2 MB
Format : PDF, ePub, Mobi
Download : 221
Read : 451

The broad aim of SUBCELLULAR BIOCHEMISTRY is to present an inte grated view of the cell in which artificial barriers between disciplines are bro ken down. The contents of Volume 7 illustrate the interconnections between initially unrelated fields of study and show strikingly how advances along one front become possible because of parallel successes in another. Current research into cell organelles and membrane systems is not only concerned with the elucidation of their structure and function. It also asks such questions as: Which regions of the cell are concerned in the bioassembly of the organelle? How are organelle and membrane precursors transported from the site of syn thesis to the newly formed cell constituent? What genetic systems control the biosynthesis and assembly of cell components and how do these systems inter act? How did the various cell constituents evolve? How did the genetic and biosynthetic systems making the organelles themselves evolve? The search for the answer to such questions has placed organelle biochemistry on a different level than that of the more restricted studies of the 1950s and early 1960s and promises to produce some fascinating and surprising results. Volume 7 opens with a detailed chapter by A. A. Hadjiolov on the bio genesis of ribosomes of eukaryotes. The general arrangement of ribosomal genes is discussed, and there is a full account of their transcription.
Category: Science

Biosynthesis And Molecular Genetics Of Fungal Secondary Metabolites

Author : Susanne Zeilinger
ISBN : 9781493925315
Genre : Science
File Size : 47.15 MB
Format : PDF, Docs
Download : 439
Read : 990

​Fungi produce many chemically diverse secondary metabolites whose biological roles largely remain elusive. Within the increasing number of sequenced fungal genomes several important genes involved in secondary metabolite formation have been identified. Most of these genes are clustered and their coordinated transcription is controlled in a complex way by both narrow pathway-specific regulators as well as broad global transcription factors responsive to environmental cues. In recent years it was discovered many of the newly identified gene clusters are silent under laboratory conditions suggesting that the biosynthetic potential of fungi is far from being exploited. Besides identifying novel bioactive metabolites from still unexplored sources, the activation of these gene clusters by several approaches may result in the discovery of new substances with antibiotic and pharmaceutical benefits. This book covers recent advances in the field of fungal secondary metabolisms ranging from methodologies to biological aspects and will include the latest knowledge on fungal molecular biology, genomics, and metabolomics. With the related volume by Professor Juan-Francisco Martin, where the most relevant and well-studied fungal secondary metabolites are compiled, this book provides a comprehensive overview of the state-of-the-art of research on fungal secondary metabolites.
Category: Science