OPTION PRICING AND ESTIMATION OF FINANCIAL MODELS WITH R

Download Option Pricing And Estimation Of Financial Models With R ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to OPTION PRICING AND ESTIMATION OF FINANCIAL MODELS WITH R book pdf for free now.

Option Pricing And Estimation Of Financial Models With R

Author : Stefano M. Iacus
ISBN : 1119990203
Genre : Business & Economics
File Size : 56.56 MB
Format : PDF, Docs
Download : 391
Read : 1250

Presents inference and simulation of stochastic process in the field of model calibration for financial times series modelled by continuous time processes and numerical option pricing. Introduces the bases of probability theory and goes on to explain how to model financial times series with continuous models, how to calibrate them from discrete data and further covers option pricing with one or more underlying assets based on these models. Analysis and implementation of models goes beyond the standard Black and Scholes framework and includes Markov switching models, Lévy models and other models with jumps (e.g. the telegraph process); Topics other than option pricing include: volatility and covariation estimation, change point analysis, asymptotic expansion and classification of financial time series from a statistical viewpoint. The book features problems with solutions and examples. All the examples and R code are available as an additional R package, therefore all the examples can be reproduced.
Category: Business & Economics

Financial Modeling

Author : Simon Benninga
ISBN : 9780262027281
Genre : Business & Economics
File Size : 32.24 MB
Format : PDF, ePub
Download : 359
Read : 806

A substantially revised edition of a bestselling text combining explanation and implementation using Excel; for classroom use or as a reference for finance practitioners.
Category: Business & Economics

Modelling Financial Time Series

Author : Stephen J. Taylor
ISBN : 9789812770851
Genre : Business & Economics
File Size : 56.74 MB
Format : PDF, Docs
Download : 957
Read : 689

This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.
Category: Business & Economics

Option Pricing Models And Volatility Using Excel Vba

Author : Fabrice D. Rouah
ISBN : 9781118429204
Genre : Business & Economics
File Size : 56.95 MB
Format : PDF, ePub
Download : 915
Read : 403

This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland
Category: Business & Economics

Numerical Methods And Optimization In Finance

Author : Manfred Gilli
ISBN : 9780123756633
Genre : Mathematics
File Size : 28.93 MB
Format : PDF, ePub
Download : 192
Read : 607

This book describes computational finance tools. It covers fundamental numerical analysis and computational techniques, such as option pricing, and gives special attention to simulation and optimization. Many chapters are organized as case studies around portfolio insurance and risk estimation problems. In particular, several chapters explain optimization heuristics and how to use them for portfolio selection and in calibration of estimation and option pricing models. Such practical examples allow readers to learn the steps for solving specific problems and apply these steps to others. At the same time, the applications are relevant enough to make the book a useful reference. Matlab and R sample code is provided in the text and can be downloaded from the book's website. Shows ways to build and implement tools that help test ideas Focuses on the application of heuristics; standard methods receive limited attention Presents as separate chapters problems from portfolio optimization, estimation of econometric models, and calibration of option pricing models
Category: Mathematics

Financial Modelling With Jump Processes

Author : Peter Tankov
ISBN : 9781135437947
Genre : Mathematics
File Size : 46.12 MB
Format : PDF, ePub, Mobi
Download : 480
Read : 684

WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematical tools required for applications can be intimidating. Potential users often get the impression that jump and Lévy processes are beyond their reach. Financial Modelling with Jump Processes shows that this is not so. It provides a self-contained overview of the theoretical, numerical, and empirical aspects involved in using jump processes in financial modelling, and it does so in terms within the grasp of nonspecialists. The introduction of new mathematical tools is motivated by their use in the modelling process, and precise mathematical statements of results are accompanied by intuitive explanations. Topics covered in this book include: jump-diffusion models, Lévy processes, stochastic calculus for jump processes, pricing and hedging in incomplete markets, implied volatility smiles, time-inhomogeneous jump processes and stochastic volatility models with jumps. The authors illustrate the mathematical concepts with many numerical and empirical examples and provide the details of numerical implementation of pricing and calibration algorithms. This book demonstrates that the concepts and tools necessary for understanding and implementing models with jumps can be more intuitive that those involved in the Black Scholes and diffusion models. If you have even a basic familiarity with quantitative methods in finance, Financial Modelling with Jump Processes will give you a valuable new set of tools for modelling market fluctuations.
Category: Mathematics

Learning Quantitative Finance With R

Author : Dr. Param Jeet
ISBN : 9781786465252
Genre : Computers
File Size : 33.87 MB
Format : PDF, ePub
Download : 347
Read : 289

Implement machine learning, time-series analysis, algorithmic trading and more About This Book Understand the basics of R and how they can be applied in various Quantitative Finance scenarios Learn various algorithmic trading techniques and ways to optimize them using the tools available in R. Contain different methods to manage risk and explore trading using Machine Learning. Who This Book Is For If you want to learn how to use R to build quantitative finance models with ease, this book is for you. Analysts who want to learn R to solve their quantitative finance problems will also find this book useful. Some understanding of the basic financial concepts will be useful, though prior knowledge of R is not required. What You Will Learn Get to know the basics of R and how to use it in the field of Quantitative Finance Understand data processing and model building using R Explore different types of analytical techniques such as statistical analysis, time-series analysis, predictive modeling, and econometric analysis Build and analyze quantitative finance models using real-world examples How real-life examples should be used to develop strategies Performance metrics to look into before deciding upon any model Deep dive into the vast world of machine-learning based trading Get to grips with algorithmic trading and different ways of optimizing it Learn about controlling risk parameters of financial instruments In Detail The role of a quantitative analyst is very challenging, yet lucrative, so there is a lot of competition for the role in top-tier organizations and investment banks. This book is your go-to resource if you want to equip yourself with the skills required to tackle any real-world problem in quantitative finance using the popular R programming language. You'll start by getting an understanding of the basics of R and its relevance in the field of quantitative finance. Once you've built this foundation, we'll dive into the practicalities of building financial models in R. This will help you have a fair understanding of the topics as well as their implementation, as the authors have presented some use cases along with examples that are easy to understand and correlate. We'll also look at risk management and optimization techniques for algorithmic trading. Finally, the book will explain some advanced concepts, such as trading using machine learning, optimizations, exotic options, and hedging. By the end of this book, you will have a firm grasp of the techniques required to implement basic quantitative finance models in R. Style and approach This book introduces you to the essentials of quantitative finance with the help of easy-to-understand, practical examples and use cases in R. Each chapter presents a specific financial concept in detail, backed with relevant theory and the implementation of a real-life example.
Category: Computers

Handbook Of Computational Finance

Author : Jin-Chuan Duan
ISBN : 3642172547
Genre : Business & Economics
File Size : 23.49 MB
Format : PDF, Docs
Download : 764
Read : 305

Any financial asset that is openly traded has a market price. Except for extreme market conditions, market price may be more or less than a “fair” value. Fair value is likely to be some complicated function of the current intrinsic value of tangible or intangible assets underlying the claim and our assessment of the characteristics of the underlying assets with respect to the expected rate of growth, future dividends, volatility, and other relevant market factors. Some of these factors that affect the price can be measured at the time of a transaction with reasonably high accuracy. Most factors, however, relate to expectations about the future and to subjective issues, such as current management, corporate policies and market environment, that could affect the future financial performance of the underlying assets. Models are thus needed to describe the stochastic factors and environment, and their implementations inevitably require computational finance tools.
Category: Business & Economics

An Introduction To Analysis Of Financial Data With R

Author : Ruey S. Tsay
ISBN : 9781119013464
Genre : Business & Economics
File Size : 49.61 MB
Format : PDF, ePub, Docs
Download : 618
Read : 916

A complete set of statistical tools for beginning financial analysts from a leading authority Written by one of the leading experts on the topic, An Introduction to Analysis of Financial Data with R explores basic concepts of visualization of financial data. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-world empirical research. The author supplies a hands-on introduction to the analysis of financial data using the freely available R software package and case studies to illustrate actual implementations of the discussed methods. The book begins with the basics of financial data, discussing their summary statistics and related visualization methods. Subsequent chapters explore basic time series analysis and simple econometric models for business, finance, and economics as well as related topics including: Linear time series analysis, with coverage of exponential smoothing for forecasting and methods for model comparison Different approaches to calculating asset volatility and various volatility models High-frequency financial data and simple models for price changes, trading intensity, and realized volatility Quantitative methods for risk management, including value at risk and conditional value at risk Econometric and statistical methods for risk assessment based on extreme value theory and quantile regression Throughout the book, the visual nature of the topic is showcased through graphical representations in R, and two detailed case studies demonstrate the relevance of statistics in finance. A related website features additional data sets and R scripts so readers can create their own simulations and test their comprehension of the presented techniques. An Introduction to Analysis of Financial Data with R is an excellent book for introductory courses on time series and business statistics at the upper-undergraduate and graduate level. The book is also an excellent resource for researchers and practitioners in the fields of business, finance, and economics who would like to enhance their understanding of financial data and today's financial markets.
Category: Business & Economics