Download Linear Programming And Network Flows ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to LINEAR PROGRAMMING AND NETWORK FLOWS book pdf for free now.

Author : Mokhtar S. Bazaraa
ISBN : 9781118211328
Genre : Mathematics
File Size : 36.55 MB
Format : PDF, ePub, Mobi
Download : 233
Read : 673

The authoritative guide to modeling and solving complex problems with linear programming—extensively revised, expanded, and updated The only book to treat both linear programming techniques and network flows under one cover, Linear Programming and Network Flows, Fourth Edition has been completely updated with the latest developments on the topic. This new edition continues to successfully emphasize modeling concepts, the design and analysis of algorithms, and implementation strategies for problems in a variety of fields, including industrial engineering, management science, operations research, computer science, and mathematics. The book begins with basic results on linear algebra and convex analysis, and a geometrically motivated study of the structure of polyhedral sets is provided. Subsequent chapters include coverage of cycling in the simplex method, interior point methods, and sensitivity and parametric analysis. Newly added topics in the Fourth Edition include: The cycling phenomenon in linear programming and the geometry of cycling Duality relationships with cycling Elaboration on stable factorizations and implementation strategies Stabilized column generation and acceleration of Benders and Dantzig-Wolfe decomposition methods Line search and dual ascent ideas for the out-of-kilter algorithm Heap implementation comments, negative cost circuit insights, and additional convergence analyses for shortest path problems The authors present concepts and techniques that are illustrated by numerical examples along with insights complete with detailed mathematical analysis and justification. An emphasis is placed on providing geometric viewpoints and economic interpretations as well as strengthening the understanding of the fundamental ideas. Each chapter is accompanied by Notes and References sections that provide historical developments in addition to current and future trends. Updated exercises allow readers to test their comprehension of the presented material, and extensive references provide resources for further study. Linear Programming and Network Flows, Fourth Edition is an excellent book for linear programming and network flow courses at the upper-undergraduate and graduate levels. It is also a valuable resource for applied scientists who would like to refresh their understanding of linear programming and network flow techniques.

Author : Mokhtar S. Bazaraa
ISBN : 9780470462720
Genre : Mathematics
File Size : 30.60 MB
Format : PDF, ePub, Mobi
Download : 126
Read : 937

The authoritative guide to modeling and solving complex problems with linear programming?extensively revised, expanded, and updated The only book to treat both linear programming techniques and network flows under one cover, Linear Programming and Network Flows, Fourth Edition has been completely updated with the latest developments on the topic. This new edition continues to successfully emphasize modeling concepts, the design and analysis of algorithms, and implementation strategies for problems in a variety of fields, including industrial engineering, management science, operations research, computer science, and mathematics. The book begins with basic results on linear algebra and convex analysis, and a geometrically motivated study of the structure of polyhedral sets is provided. Subsequent chapters include coverage of cycling in the simplex method, interior point methods, and sensitivity and parametric analysis. Newly added topics in the Fourth Edition include: The cycling phenomenon in linear programming and the geometry of cycling Duality relationships with cycling Elaboration on stable factorizations and implementation strategies Stabilized column generation and acceleration of Benders and Dantzig-Wolfe decomposition methods Line search and dual ascent ideas for the out-of-kilter algorithm Heap implementation comments, negative cost circuit insights, and additional convergence analyses for shortest path problems The authors present concepts and techniques that are illustrated by numerical examples along with insights complete with detailed mathematical analysis and justification. An emphasis is placed on providing geometric viewpoints and economic interpretations as well as strengthening the understanding of the fundamental ideas. Each chapter is accompanied by Notes and References sections that provide historical developments in addition to current and future trends. Updated exercises allow readers to test their comprehension of the presented material, and extensive references provide resources for further study. Linear Programming and Network Flows, Fourth Edition is an excellent book for linear programming and network flow courses at the upper-undergraduate and graduate levels. It is also a valuable resource for applied scientists who would like to refresh their understanding of linear programming and network flow techniques.

Author : Mokhtar S. Bazaraa
ISBN : 8126518928
Genre :
File Size : 29.12 MB
Format : PDF
Download : 686
Read : 515

The book addresses the problem of minimizing or maximizing a linear function in the presence of linear equality or inequality constraints. The general theory and characteristics of optimization problems are presented, along with effective solution algorithms. It explores linear programming and network flows, employing polynomial-time algorithms and various specializations of the simplex method. The text also includes many numerical examples to illustrate theory and techniques.· Linear Algebra, Convex Analysis, and Polyhedral Sets· The Simplex Method· Starting Solution and Convergence· Special Simplex Implementations and Optimality Conditions· Duality and Sensitivity Analysis· The Decomposition Principle· Complexity of the Simplex Algorithm and Polynomial Algorithms· Minimal Cost Network Flows· The Transportation and Assignment Problems· The Out-of-Kilter Algorithm· Maximal Flow, Shortest Path, Multicommodity Flow, and Network Synthesis Problems

Author : Robert J Vanderbei
ISBN : 9781475756623
Genre : Business & Economics
File Size : 23.60 MB
Format : PDF, ePub, Mobi
Download : 579
Read : 1034

This book provides an introduction to optimization. It details constrained optimization, beginning with a substantial treatment of linear programming and proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Coverage underscores the purpose of optimization: to solve practical problems on a computer. C programs that implement the major algorithms and JAVA tools are available online.

Author : Mokhtar S. Bazaraa
ISBN : 9781118626306
Genre : Mathematics
File Size : 75.5 MB
Format : PDF, ePub, Mobi
Download : 974
Read : 341

COMPREHENSIVE COVERAGE OF NONLINEAR PROGRAMMING THEORY AND ALGORITHMS, THOROUGHLY REVISED AND EXPANDED Nonlinear Programming: Theory and Algorithms—now in an extensively updated Third Edition—addresses the problem of optimizing an objective function in the presence of equality and inequality constraints. Many realistic problems cannot be adequately represented as a linear program owing to the nature of the nonlinearity of the objective function and/or the nonlinearity of any constraints. The Third Edition begins with a general introduction to nonlinear programming with illustrative examples and guidelines for model construction. Concentration on the three major parts of nonlinear programming is provided: Convex analysis with discussion of topological properties of convex sets, separation and support of convex sets, polyhedral sets, extreme points and extreme directions of polyhedral sets, and linear programming Optimality conditions and duality with coverage of the nature, interpretation, and value of the classical Fritz John (FJ) and the Karush-Kuhn-Tucker (KKT) optimality conditions; the interrelationships between various proposed constraint qualifications; and Lagrangian duality and saddle point optimality conditions Algorithms and their convergence, with a presentation of algorithms for solving both unconstrained and constrained nonlinear programming problems Important features of the Third Edition include: New topics such as second interior point methods, nonconvex optimization, nondifferentiable optimization, and more Updated discussion and new applications in each chapter Detailed numerical examples and graphical illustrations Essential coverage of modeling and formulating nonlinear programs Simple numerical problems Advanced theoretical exercises The book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques. The logical and self-contained format uniquely covers nonlinear programming techniques with a great depth of information and an abundance of valuable examples and illustrations that showcase the most current advances in nonlinear problems.

An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.