LEARNING IPYTHON FOR INTERACTIVE COMPUTING AND DATA VISUALIZATION SECOND EDITION

Download Learning Ipython For Interactive Computing And Data Visualization Second Edition ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to LEARNING IPYTHON FOR INTERACTIVE COMPUTING AND DATA VISUALIZATION SECOND EDITION book pdf for free now.

Learning Ipython For Interactive Computing And Data Visualization

Author : Cyrille Rossant
ISBN : 9781783986996
Genre : Computers
File Size : 49.66 MB
Format : PDF
Download : 869
Read : 810

Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and ipyparallel Who This Book Is For This book targets students, teachers, researchers, engineers, analysts, journalists, hobbyists, and all data enthusiasts who are interested in analyzing and visualizing real-world datasets. If you are new to programming and data analysis, this book is exactly for you. If you're already familiar with another language or analysis software, you will also appreciate this introduction to the Python data analysis platform. Finally, there are more technical topics for advanced readers. No prior experience is required; this book contains everything you need to know. What You Will Learn Install Anaconda and code in Python in the Jupyter Notebook Load and explore datasets interactively Perform complex data manipulations effectively with pandas Create engaging data visualizations with matplotlib and seaborn Simulate mathematical models with NumPy Visualize and process images interactively in the Jupyter Notebook with scikit-image Accelerate your code with Numba, Cython, and IPython.parallel Extend the Notebook interface with HTML, JavaScript, and D3 In Detail Python is a user-friendly and powerful programming language. IPython offers a convenient interface to the language and its analysis libraries, while the Jupyter Notebook is a rich environment well-adapted to data science and visualization. Together, these open source tools are widely used by beginners and experts around the world, and in a huge variety of fields and endeavors. This book is a beginner-friendly guide to the Python data analysis platform. After an introduction to the Python language, IPython, and the Jupyter Notebook, you will learn how to analyze and visualize data on real-world examples, how to create graphical user interfaces for image processing in the Notebook, and how to perform fast numerical computations for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By the end of this book, you will be able to perform in-depth analyses of all sorts of data. Style and approach This is a hands-on beginner-friendly guide to analyze and visualize data on real-world examples with Python and the Jupyter Notebook.
Category: Computers

Ipython Interactive Computing And Visualization Cookbook Second Edition

Author : Cyrille Rossant
ISBN : 9781785881930
Genre : Computers
File Size : 81.74 MB
Format : PDF, ePub, Docs
Download : 127
Read : 408

Learn to use IPython and Jupyter Notebook for your data analysis and visualization work. Key Features Leverage the Jupyter Notebook for interactive data science and visualization Become an expert in high-performance computing and visualization for data analysis and scientific modeling A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations Book Description Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics. What you will learn Master all features of the Jupyter Notebook Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments Visualize data and create interactive plots in the Jupyter Notebook Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn) Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV Simulate deterministic and stochastic dynamical systems in Python Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theory Who this book is for This book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Category: Computers

Datenanalyse Mit Python

Author : Wes McKinney
ISBN : 9783960102144
Genre : Computers
File Size : 53.63 MB
Format : PDF, Kindle
Download : 273
Read : 1022

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.
Category: Computers

Python Crashkurs

Author : Eric Matthes
ISBN : 9783960881469
Genre : Computers
File Size : 20.81 MB
Format : PDF, ePub, Mobi
Download : 634
Read : 759

"Python Crashkurs" ist eine kompakte und gründliche Einführung, die es Ihnen nach kurzer Zeit ermöglicht, Python-Programme zu schreiben, die für Sie Probleme lösen oder Ihnen erlauben, Aufgaben mit dem Computer zu erledigen. In der ersten Hälfte des Buches werden Sie mit grundlegenden Programmierkonzepten wie Listen, Wörterbücher, Klassen und Schleifen vertraut gemacht. Sie erlernen das Schreiben von sauberem und lesbarem Code mit Übungen zu jedem Thema. Sie erfahren auch, wie Sie Ihre Programme interaktiv machen und Ihren Code testen, bevor Sie ihn einem Projekt hinzufügen. Danach werden Sie Ihr neues Wissen in drei komplexen Projekten in die Praxis umsetzen: ein durch "Space Invaders" inspiriertes Arcade-Spiel, eine Datenvisualisierung mit Pythons superpraktischen Bibliotheken und eine einfache Web-App, die Sie online bereitstellen können. Während der Arbeit mit dem "Python Crashkurs" lernen Sie, wie Sie: - leistungsstarke Python-Bibliotheken und Tools richtig einsetzen – einschließlich matplotlib, NumPy und Pygal - 2D-Spiele programmieren, die auf Tastendrücke und Mausklicks reagieren, und die schwieriger werden, je weiter das Spiel fortschreitet - mit Daten arbeiten, um interaktive Visualisierungen zu generieren - Web-Apps erstellen und anpassen können, um diese sicher online zu deployen - mit Fehlern umgehen, die häufig beim Programmieren auftreten Dieses Buch wird Ihnen effektiv helfen, Python zu erlernen und eigene Programme damit zu entwickeln. Warum länger warten? Fangen Sie an!
Category: Computers

Python Kurz Gut

Author : Mark Lutz
ISBN : 9783955617714
Genre : Computers
File Size : 85.90 MB
Format : PDF, Kindle
Download : 682
Read : 180

Die objektorientierte Sprache Python eignet sich hervorragend zum Schreiben von Skripten, Programmen und Prototypen. Sie ist frei verfügbar, leicht zu lernen und zwischen allen wichtigen Plattformen portabel, einschließlich Linux, Unix, Windows und Mac OS. Damit Sie im Programmieralltag immer den Überblick behalten, sind die verschiedenen Sprachmerkmale und Elemente in Python – kurz & gut übersichtlich zusammengestellt. Für Auflage 5 wurde die Referenz komplett überarbeitet, erweitert und auf den neuesten Stand gebracht, so dass sie die beiden aktuellen Versionen 2.7 und 3.4 berücksichtigt. Python – kurz & gut behandelt unter anderem: Eingebaute Typen wie Zahlen, Listen, Dictionarys u.v.a.; nweisungen und Syntax für Entwicklung und Ausführung von Objekten; Die objektorientierten Entwicklungstools in Python; Eingebaute Funktionen, Ausnahmen und Attribute; pezielle Methoden zur Operatorenüberladung; Weithin benutzte Standardbibliotheksmodule und Erweiterungen; Kommandozeilenoptionen und Entwicklungswerkzeuge. Mark Lutz stieg 1992 in die Python-Szene ein und ist seitdem als aktiver Pythonista bekannt. Er gibt Kurse, hat zahlreiche Bücher geschrieben und mehrere Python-Systeme programmiert.
Category: Computers

Einf Hrung In Machine Learning Mit Python

Author : Andreas C. Müller
ISBN : 9783960101123
Genre : Computers
File Size : 60.57 MB
Format : PDF, ePub, Mobi
Download : 624
Read : 971

Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research
Category: Computers

Data Science Mit Python

Author : Jake VanderPlas
ISBN : 9783958456976
Genre : Computers
File Size : 88.92 MB
Format : PDF, ePub
Download : 564
Read : 280

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts
Category: Computers

Visualize This

Author : Nathan Yau
ISBN : 9783527760220
Genre : Statistics / Graphic methods / Data processing
File Size : 31.96 MB
Format : PDF, ePub
Download : 238
Read : 275

A guide on how to visualise and tell stories with data, providing practical design tips complemented with step-by-step tutorials.
Category: Statistics / Graphic methods / Data processing

Regul Re Ausdr Cke Kochbuch

Author : Jan Goyvaerts
ISBN : 9783897219571
Genre : Computer programming
File Size : 23.84 MB
Format : PDF, Mobi
Download : 994
Read : 1043

Fur Entwickler, die regelmaig mit Texten arbeiten, sind regulare Ausdrucke so lebensnotwendig wie die Luft zum Atmen. Doch wer sich nur oberflachlich mit diesem Hilfsmittel auskennt, gerat leicht in unangenehme Situationen. Selbst erfahrene Programmierer haben immer wieder mit schlechter Performance, falsch positiven oder falsch negativen Ergebnissen und unerklarlichen Fehlern zu kampfen. Dieses Kochbuch schafft Abhilfe: Anhand von uber 100 Rezepten fur C#, Java, JavaScript, Perl, PHP, Python, Ruby und VB.NET lernen Sie, wie Sie regulare Ausdrucke gekonnte einsetzen, typische Fallen umgehen und so viel wertvolle Zeit sparen. Mit Tutorial fur Anfanger: Falls Sie noch nicht - oder nur wenig - mit regularen Ausdrucken gearbeitet haben, dienen Ihnen die ersten Kapitel dieses Buchs als Tutorial, das Sie mit den Grundlagen der Regexes und empfehlenswerten Tools vertraut macht. So sind Sie fur die komplexeren Beispiele in den darauf folgenden Kapiteln bestens gerustet. Tricks und Ideen fur Profis: Auch erfahrene Regex-Anwender kommen ganz auf ihre Kosten: Jan Goyvaerts und Steven Levithan, zwei anerkannte Groen im Bereich regulare Ausdrucke, gewahren tiefe Einblicke in ihren Erfahrungsschatz und uberraschen mit eleganten Losungen fur fast jede denkbare Herausforderung. Deckt die unterschiedlichen Programmiersprachen ab: In allen Rezepten werden Regex-Optionen sowie Varianten fur die verschiedenen Programmier- und Skriptsprachen aufgezeigt. Damit lassen sich sprachenspezifische Bugs sicher vermeiden.
Category: Computer programming