Download Introduction To Graph Theory ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to INTRODUCTION TO GRAPH THEORY book pdf for free now.

This is a companion to the book Introduction to Graph Theory (World Scientific, 2006). The student who has worked on the problems will find the solutions presented useful as a check and also as a model for rigorous mathematical writing. For ease of reference, each chapter recaps some of the important concepts and/or formulae from the earlier book.

Graph theory is an area in discrete mathematics which studies configurations (called graphs) involving a set of vertices interconnected by edges. This book is intended as a general introduction to graph theory and, in particular, as a resource book for junior college students and teachers reading and teaching the subject at H3 Level in the new Singapore mathematics curriculum for junior college. The book builds on the verity that graph theory at this level is a subject that lends itself well to the development of mathematical reasoning and proof.

Author : Robin J. Wilson
ISBN : UCSC:32106016081637
Genre : Mathematics
File Size : 62.11 MB
Format : PDF, Mobi
Download : 803
Read : 560

Graph Theory has recently emerged as a subject in its own right, as well as being an important mathematical tool in such diverse subjects as operational research, chemistry, sociology and genetics. Robin Wilson's book has been widely used as a text for undergraduate courses in mathematics, computer science and economics, and as a readable introduction to the subject for non-mathematicians. The opening chapters provide a basic foundation course, containing such topics as trees, algorithms, Eulerian and Hamiltonian graphs, planar graphs and colouring, with special reference to the four-colour theorem. Following these, there are two chapters on directed graphs and transversal theory, relating these areas to such subjects as Markov chains and network flows. Finally, there is a chapter on matroid theory, which is used to consolidate some of the material from earlier chapters. For this new edition, the text has been completely revised, and there is a full range of exercises of varying difficulty. There is new material on algorithms, tree-searches, and graph-theoretical puzzles. Full solutions are provided for many of the exercises. Robin Wilson is Dean and Director of Studies in the Faculty of Mathematics and Computing at the Open University.

Author : Richard J. Trudeau
ISBN : 9780486318660
Genre : Mathematics
File Size : 90.53 MB
Format : PDF, Mobi
Download : 733
Read : 901

Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.

Author : Douglas West
ISBN : 0131437372
Genre : Mathematics
File Size : 23.1 MB
Format : PDF, Mobi
Download : 664
Read : 456

This book fills a need for a thorough introduction to graph theory that features both the understanding and writing of proofs about graphs. Verification that algorithms work is emphasized more than their complexity.An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs.For those who need to learn to make coherent arguments in the fields of mathematics and computer science.

Author : Gary Chartrand
ISBN : 9780486134949
Genre : Science
File Size : 30.62 MB
Format : PDF, Kindle
Download : 489
Read : 1056

Clear, lively style covers all basics of theory and application, including mathematical models, elementary graph theory, transportation problems, connection problems, party problems, diagraphs and mathematical models, games and puzzles, more.

Author : Vitaly Ivanovich Voloshin
ISBN : 1606923722
Genre : Graph theory
File Size : 71.25 MB
Format : PDF, Mobi
Download : 847
Read : 916

This book is for math and computer science majors, for students and representatives of many other disciplines (like bioinformatics, for example) taking courses in graph theory, discrete mathematics, data structures, algorithms. It is also for anyone who wants to understand the basics of graph theory, or just is curious. No previous knowledge in graph theory or any other significant mathematics is required. The very basic facts from set theory, proof techniques and algorithms are sufficient to understand it; but even those are explained in the text. Structurally, the text is divided into two parts where Part II is the generalisation of Part I. The first part discusses the key concepts of graph theory with emphasis on trees, bipartite graphs, cycles, chordal graphs, planar graphs and graph colouring. The second part considers generalisations of Part I and discusses hypertrees, bipartite hypergraphs, hypercycles, chordal hypergraphs, planar hypergraphs and hypergraph colouring. There is an interaction between the parts and within the parts to show how ideas of generalisations work. The main point is to exhibit the ways of generalisations and interactions of mathematical concepts from the very simple to the most advanced. One of the features of this text is the duality of hypergraphs. This fundamental concept is missing in graph theory (and in its introductory teaching) because dual graphs are not properly graphs, they are hypergraphs. However, as Part II shows, the duality is a very powerful tool in understanding, simplifying and unifying many combinatorial relations; it is basically a look at the same structure from the opposite (vertices versus edges) point of view.

Graph Theory is an important area of contemporary mathematics with many applications in computer science, genetics, chemistry, engineering, industry, business and in social sciences. It is a young science invented and developing for solving challenging problems of "computerised" society for which traditional areas of mathematics such as algebra or calculus are powerless. This book is for math and computer science majors, for students and representatives of many other disciplines (like bioinformatics, for example) taking the courses in graph theory, discrete mathematics, data structures, algorithms. It is also for anyone who wants to understand the basics of graph theory, or just is curious. No previous knowledge in graph theory or any other significant mathematics is required. The very basic facts from set theory, proof techniques and algorithms are sufficient to understand it; but even those are explained in the text. The book discusses the key concepts of graph theory with emphasis on trees, bipartite graphs, cycles, chordal graphs, planar graphs and graph colouring. The reader is conducted from the simplest examples, definitions and concepts, step by step, towards an understanding of a few most fundamental facts in the field. to show an interaction between the sections and chapters for the sake of integrity; clearly expose the essence and core of graph theory. The book may be used on undergraduate level for one semester introductory course. It includes many examples, figures and algorithms; each section ends with a set of exercises and a set of computer projects. The answers and hints to selected exercises are provided at the end of the book. The material has been tested in class during more than 20-years of teaching experience of the author.