Download Handbook Of Monte Carlo Methods Wiley Series In Probability And Statistics ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to HANDBOOK OF MONTE CARLO METHODS WILEY SERIES IN PROBABILITY AND STATISTICS book pdf for free now.

Handbook Of Monte Carlo Methods

Author : Dirk P. Kroese
ISBN : 1118014952
Genre : Mathematics
File Size : 40.45 MB
Format : PDF
Download : 508
Read : 1087

A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.
Category: Mathematics

Handbook In Monte Carlo Simulation

Author : Paolo Brandimarte
ISBN : 9781118594513
Genre : Business & Economics
File Size : 70.46 MB
Format : PDF, ePub, Mobi
Download : 636
Read : 722

An accessible treatment of Monte Carlo methods, techniques, and applications in the field of finance and economics Providing readers with an in-depth and comprehensive guide, the Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics presents a timely account of the applicationsof Monte Carlo methods in financial engineering and economics. Written by an international leading expert in thefield, the handbook illustrates the challenges confronting present-day financial practitioners and provides various applicationsof Monte Carlo techniques to answer these issues. The book is organized into five parts: introduction andmotivation; input analysis, modeling, and estimation; random variate and sample path generation; output analysisand variance reduction; and applications ranging from option pricing and risk management to optimization. The Handbook in Monte Carlo Simulation features: An introductory section for basic material on stochastic modeling and estimation aimed at readers who may need a summary or review of the essentials Carefully crafted examples in order to spot potential pitfalls and drawbacks of each approach An accessible treatment of advanced topics such as low-discrepancy sequences, stochastic optimization, dynamic programming, risk measures, and Markov chain Monte Carlo methods Numerous pieces of R code used to illustrate fundamental ideas in concrete terms and encourage experimentation The Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics is a complete reference for practitioners in the fields of finance, business, applied statistics, econometrics, and engineering, as well as a supplement for MBA and graduate-level courses on Monte Carlo methods and simulation.
Category: Business & Economics

Simulation And The Monte Carlo Method

Author : Reuven Y. Rubinstein
ISBN : 9781118210529
Genre : Mathematics
File Size : 57.87 MB
Format : PDF, ePub
Download : 982
Read : 773

This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.
Category: Mathematics

Stochastic Simulation And Monte Carlo Methods

Author : Carl Graham
ISBN : 9783642393631
Genre : Mathematics
File Size : 79.50 MB
Format : PDF, ePub
Download : 974
Read : 735

In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.
Category: Mathematics

Exploring Monte Carlo Methods

Author : William L. Dunn
ISBN : 0080930611
Genre : Mathematics
File Size : 44.42 MB
Format : PDF, Kindle
Download : 547
Read : 734

Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon’s needle problem" provides a unifying theme as it is repeatedly used to illustrate many features of Monte Carlo methods. This book provides the basic detail necessary to learn how to apply Monte Carlo methods and thus should be useful as a text book for undergraduate or graduate courses in numerical methods. It is written so that interested readers with only an understanding of calculus and differential equations can learn Monte Carlo on their own. Coverage of topics such as variance reduction, pseudo-random number generation, Markov chain Monte Carlo, inverse Monte Carlo, and linear operator equations will make the book useful even to experienced Monte Carlo practitioners. Provides a concise treatment of generic Monte Carlo methods Proofs for each chapter Appendixes include Certain mathematical functions; Bose Einstein functions, Fermi Dirac functions, Watson functions
Category: Mathematics

Monte Carlo Methods

Author : J. Hammersley
ISBN : 9789400958197
Genre : Science
File Size : 44.28 MB
Format : PDF, ePub, Mobi
Download : 124
Read : 222

This monograph surveys the present state of Monte Carlo methods. we have dallied with certain topics that have interested us Although personally, we hope that our coverage of the subject is reasonably complete; at least we believe that this book and the references in it come near to exhausting the present range of the subject. On the other hand, there are many loose ends; for example we mention various ideas for variance reduction that have never been seriously appli(:d in practice. This is inevitable, and typical of a subject that has remained in its infancy for twenty years or more. We are convinced Qf:ver theless that Monte Carlo methods will one day reach an impressive maturity. The main theoretical content of this book is in Chapter 5; some readers may like to begin with this chapter, referring back to Chapters 2 and 3 when necessary. Chapters 7 to 12 deal with applications of the Monte Carlo method in various fields, and can be read in any order. For the sake of completeness, we cast a very brief glance in Chapter 4 at the direct simulation used in industrial and operational research, where the very simplest Monte Carlo techniques are usually sufficient. We assume that the reader has what might roughly be described as a 'graduate' knowledge of mathematics. The actual mathematical techniques are, with few exceptions, quite elementary, but we have freely used vectors, matrices, and similar mathematical language for the sake of conciseness.
Category: Science

Monte Carlo Simulation With Applications To Finance

Author : Hui Wang
ISBN : 9781439858240
Genre : Business & Economics
File Size : 21.56 MB
Format : PDF, ePub
Download : 181
Read : 186

Developed from the author’s course on Monte Carlo simulation at Brown University, Monte Carlo Simulation with Applications to Finance provides a self-contained introduction to Monte Carlo methods in financial engineering. It is suitable for advanced undergraduate and graduate students taking a one-semester course or for practitioners in the financial industry. The author first presents the necessary mathematical tools for simulation, arbitrary free option pricing, and the basic implementation of Monte Carlo schemes. He then describes variance reduction techniques, including control variates, stratification, conditioning, importance sampling, and cross-entropy. The text concludes with stochastic calculus and the simulation of diffusion processes. Only requiring some familiarity with probability and statistics, the book keeps much of the mathematics at an informal level and avoids technical measure-theoretic jargon to provide a practical understanding of the basics. It includes a large number of examples as well as MATLAB® coding exercises that are designed in a progressive manner so that no prior experience with MATLAB is needed.
Category: Business & Economics

Handbook Of Probability

Author : Ionut Florescu
ISBN : 9781118593097
Genre : Mathematics
File Size : 56.88 MB
Format : PDF, Mobi
Download : 536
Read : 597

THE COMPLETE COLLECTION NECESSARY FOR A CONCRETE UNDERSTANDING OF PROBABILITY Written in a clear, accessible, and comprehensive manner, the Handbook of Probability presents the fundamentals of probability with an emphasis on the balance of theory, application, and methodology. Utilizing basic examples throughout, the handbook expertly transitions between concepts and practice to allow readers an inclusive introduction to the field of probability. The book provides a useful format with self-contained chapters, allowing the reader easy and quick reference. Each chapter includes an introduction, historical background, theory and applications, algorithms, and exercises. The Handbook of Probability offers coverage of: Probability Space Probability Measure Random Variables Random Vectors in Rn Characteristic Function Moment Generating Function Gaussian Random Vectors Convergence Types Limit Theorems The Handbook of Probability is an ideal resource for researchers and practitioners in numerous fields, such as mathematics, statistics, operations research, engineering, medicine, and finance, as well as a useful text for graduate students.
Category: Mathematics

Monte Carlo

Author : George Fishman
ISBN : 9781475725537
Genre : Mathematics
File Size : 49.90 MB
Format : PDF
Download : 543
Read : 1239

Apart from a thorough exploration of all the important concepts, this volume includes over 75 algorithms, ready for putting into practice. The book also contains numerous hands-on implementations of selected algorithms to demonstrate applications in realistic settings. Readers are assumed to have a sound understanding of calculus, introductory matrix analysis, and intermediate statistics, but otherwise the book is self-contained. Suitable for graduates and undergraduates in mathematics and engineering, in particular operations research, statistics, and computer science.
Category: Mathematics

Monte Carlo Statistical Methods

Author : Christian Robert
ISBN : 9781475741452
Genre : Mathematics
File Size : 86.84 MB
Format : PDF, Kindle
Download : 985
Read : 848

We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.
Category: Mathematics