Download Geometric Algebra For Physicists ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to GEOMETRIC ALGEBRA FOR PHYSICISTS book pdf for free now.

Author : Chris Doran
ISBN : 9781139643146
Genre : Science
File Size : 32.4 MB
Format : PDF, ePub, Mobi
Download : 102
Read : 350

Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.

Author : William Baylis
ISBN : 9781461241041
Genre : Science
File Size : 69.55 MB
Format : PDF
Download : 250
Read : 1096

This volume is an outgrowth of the 1995 Summer School on Theoretical Physics of the Canadian Association of Physicists (CAP), held in Banff, Alberta, in the Canadian Rockies, from July 30 to August 12,1995. The chapters, based on lectures given at the School, are designed to be tutorial in nature, and many include exercises to assist the learning process. Most lecturers gave three or four fifty-minute lectures aimed at relative novices in the field. More emphasis is therefore placed on pedagogy and establishing comprehension than on erudition and superior scholarship. Of course, new and exciting results are presented in applications of Clifford algebras, but in a coherent and user-friendly way to the nonspecialist. The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others.

Author : David Hestenes
ISBN : 9027725616
Genre : Mathematics
File Size : 70.79 MB
Format : PDF, Kindle
Download : 112
Read : 277

Geometric Calculus is a language for expressing and analyzing the full range of geometric concepts in mathematics. Clifford Algebra provides the grammar. Complex number, quaternions, matrix algebra, vector, tensor and spinor calculus and differential forms are integrated into a single comprehensive system. The geometric calculus developed in this book has the following features: a systematic development of definitions, concepts and theorems needed to apply the calculus easily and effectively to almost any branch of mathematics or physics; a formulation of linear algebra capable of details computations without matrices or coordinates; new proofs and treatments of canonical forms including an extensive discussion of spinor representations of rotations in Euclidean n-space; a new concept of differentiation which makes it possible to formulate calculus on manifolds and carry out complete calculations of such thinks as the Jacobian of a transformation without resorting to coordinates; a coordinate-free approach to differential geometry featuring a new quantity, the shape tensor, from which the curvature tensor can be computed without a connection; a formulation of integration theory based on a concept of directed measure, with new results including a generalization of Cauchy's integral formula to n-dimension spaces and explicit integral formula for the inverse of a transformation; a new approach to Lie groups and Lie algebras. --From cover.

Author : John Snygg
ISBN : 9780817682828
Genre : Mathematics
File Size : 88.20 MB
Format : PDF, Mobi
Download : 702
Read : 840

Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.

The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling of disbelief that the fundamental geometric product of vectors could have been left out of his undergraduate mathematics education. Geometric algebra provides a rich, general mathematical framework for the develop ment of multilinear algebra, projective and affine geometry, calculus on a manifold, the representation of Lie groups and Lie algebras, the use of the horosphere and many other areas. This book is addressed to a broad audience of applied mathematicians, physicists, computer scientists, and engineers.

Author : Leo Dorst
ISBN : 9780080553108
Genre : Computers
File Size : 68.91 MB
Format : PDF
Download : 508
Read : 397

Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA

Author : John W. Arthur
ISBN : 9780470941638
Genre : Mathematics
File Size : 39.73 MB
Format : PDF
Download : 585
Read : 1088

"This book covers all of the information needed to design LEDs into end-products. It is a practical guide, primarily explaning how things are done by practicing engineers. Equations are used only for practical calculations, and are kept to the level of high-school algebra. There are numerous drawings and schematics showing how things such as measurements are actually made, and showing curcuits that actually work. There are practical notes and examples embedded in the text that give pointers and how-to guides on many of the book's topics"--Provided by publisher.

Author : Fred Y. Ye
ISBN : 9789811059360
Genre : Business & Economics
File Size : 48.74 MB
Format : PDF, ePub
Download : 387
Read : 216

This book presents scientific metrics and its applications for approaching scientific findings in the field of Physics, Economics and Scientometrics. Based on a collection of the author’s publications in these fields, the book reveals the profound links between the measures and the findings in the natural laws, from micro-particles to macro-cosmos, in the economic rules of human society, and in the core knowledge among mass information. With this book the readers can gain insights or ideas on addressing the questions of how to measure the physical world, economics process and human knowledge, from the perspective of scientific metrics. The book is also useful to scientists, particularly to specialists in physics, economics and scientometrics, for promoting and stimulating their creative ideas based on scientific metrics.

Author : Christian Perwass
ISBN : 9783540890683
Genre : Computers
File Size : 57.97 MB
Format : PDF, ePub
Download : 392
Read : 1176

The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation. Graduate students, scientists, researchers and practitioners will benefit from this book. The examples given in the text are mostly recent research results, so practitioners can see how to apply geometric algebra to real tasks, while researchers note starting points for future investigations. Students will profit from the detailed introduction to geometric algebra, while the text is supported by the author's visualization software, CLUCalc, freely available online, and a website that includes downloadable exercises, slides and tutorials.

Author : John Vince
ISBN : 9781846289972
Genre : Computers
File Size : 24.54 MB
Format : PDF, Docs
Download : 707
Read : 1138

Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems. The author tackles this complex subject with inimitable style, and provides an accessible and very readable introduction. The book is filled with lots of clear examples and is very well illustrated. Introductory chapters look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics.