EXACT SOLUTIONS AND INVARIANT SUBSPACES OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS IN MECHANICS AND PHYSICS CHAPMAN HALL CRC APPLIED MATHEMATICS NONLINEAR SCIENCE

Download Exact Solutions And Invariant Subspaces Of Nonlinear Partial Differential Equations In Mechanics And Physics Chapman Hall Crc Applied Mathematics Nonlinear Science ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to EXACT SOLUTIONS AND INVARIANT SUBSPACES OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS IN MECHANICS AND PHYSICS CHAPMAN HALL CRC APPLIED MATHEMATICS NONLINEAR SCIENCE book pdf for free now.

Author : Victor A. Galaktionov
ISBN : 1420011626
Genre : Mathematics
File Size : 58.18 MB
Format : PDF, ePub, Docs
Download : 797
Read : 607

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics is the first book to provide a systematic construction of exact solutions via linear invariant subspaces for nonlinear differential operators. Acting as a guide to nonlinear evolution equations and models from physics and mechanics, the book focuses on the existence of new exact solutions on linear invariant subspaces for nonlinear operators and their crucial new properties. This practical reference deals with various partial differential equations (PDEs) and models that exhibit some common nonlinear invariant features. It begins with classical as well as more recent examples of solutions on invariant subspaces. In the remainder of the book, the authors develop several techniques for constructing exact solutions of various nonlinear PDEs, including reaction-diffusion and gas dynamics models, thin-film and Kuramoto-Sivashinsky equations, nonlinear dispersion (compacton) equations, KdV-type and Harry Dym models, quasilinear magma equations, and Green-Naghdi equations. Using exact solutions, they describe the evolution properties of blow-up or extinction phenomena, finite interface propagation, and the oscillatory, changing sign behavior of weak solutions near interfaces for nonlinear PDEs of various types and orders. The techniques surveyed in Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics serve as a preliminary introduction to the general theory of nonlinear evolution PDEs of different orders and types.

Author : Kenan Taş
ISBN : 9783319910659
Genre : Technology & Engineering
File Size : 71.60 MB
Format : PDF, Docs
Download : 594
Read : 1176

This book collects chapters dealing with some of the theoretical aspects needed to properly discuss the dynamics of complex engineering systems. The book illustrates advanced theoretical development and new techniques designed to better solve problems within the nonlinear dynamical systems. Topics covered in this volume include advances on fixed point results on partial metric spaces, localization of the spectral expansions associated with the partial differential operators, irregularity in graphs and inverse problems, Hyers-Ulam and Hyers-Ulam-Rassias stability for integro-differential equations, fixed point results for mixed multivalued mappings of Feng-Liu type on Mb-metric spaces, and the limit q-Bernstein operators, analytical investigation on the fractional diffusion absorption equation.

Author : Roman Cherniha
ISBN : 9781498776196
Genre : Mathematics
File Size : 71.46 MB
Format : PDF, ePub, Docs
Download : 846
Read : 1123

It is well known that symmetry-based methods are very powerful tools for investigating nonlinear partial differential equations (PDEs), notably for their reduction to those of lower dimensionality (e.g. to ODEs) and constructing exact solutions. This book is devoted to (1) search Lie and conditional (non-classical) symmetries of nonlinear RDC equations, (2) constructing exact solutions using the symmetries obtained, and (3) their applications for solving some biologically and physically motivated problems. The book summarises the results derived by the authors during the last 10 years and those obtained by some other authors.

Author : Roman Cherniha
ISBN : 9781351650878
Genre : Mathematics
File Size : 63.67 MB
Format : PDF, ePub
Download : 497
Read : 889

It is well known that symmetry-based methods are very powerful tools for investigating nonlinear partial differential equations (PDEs), notably for their reduction to those of lower dimensionality (e.g. to ODEs) and constructing exact solutions. This book is devoted to (1) search Lie and conditional (non-classical) symmetries of nonlinear RDC equations, (2) constructing exact solutions using the symmetries obtained, and (3) their applications for solving some biologically and physically motivated problems. The book summarises the results derived by the authors during the last 10 years and those obtained by some other authors.

Author : Dean G. Duffy
ISBN : 1420010948
Genre : Mathematics
File Size : 49.6 MB
Format : PDF
Download : 696
Read : 437

Methods for Solving Mixed Boundary Value Problems An up-to-date treatment of the subject, Mixed Boundary Value Problems focuses on boundary value problems when the boundary condition changes along a particular boundary. The book often employs numerical methods to solve mixed boundary value problems and the associated integral equations. Straightforward Presentation of Mathematical Techniques The author first provides examples of mixed boundary value problems and the mathematical background of integral functions and special functions. He then presents classic mathematical physics problems to explain the origin of mixed boundary value problems and the mathematical techniques that were developed to handle them. The remaining chapters solve various mixed boundary value problems using separation of variables, transform methods, the Wiener–Hopf technique, Green’s function, and conformal mapping. Decipher Mixed Boundary Value Problems That Occur in Diverse Fields Including MATLAB® to help with problem solving, this book provides the mathematical skills needed for the solution of mixed boundary value problems.

Author : Matthew P. Coleman
ISBN : 9781439898475
Genre : Mathematics
File Size : 77.27 MB
Format : PDF, ePub, Mobi
Download : 231
Read : 1006

An Introduction to Partial Differential Equations with MATLAB®, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat, the propagation of sound waves, the spread of algae along the ocean’s surface, the fluctuation in the price of a stock option, and the quantum mechanical behavior of a hydrogen atom. Suitable for a two-semester introduction to PDEs and Fourier series for mathematics, physics, and engineering students, the text teaches the equations based on method of solution. It provides both physical and mathematical motivation as much as possible. The author treats problems in one spatial dimension before dealing with those in higher dimensions. He covers PDEs on bounded domains and then on unbounded domains, introducing students to Fourier series early on in the text. Each chapter’s prelude explains what and why material is to be covered and considers the material in a historical setting. The text also contains many exercises, including standard ones and graphical problems using MATLAB. While the book can be used without MATLAB, instructors and students are encouraged to take advantage of MATLAB’s excellent graphics capabilities. The MATLAB code used to generate the tables and figures is available in an appendix and on the author’s website.

Author : Peng-Fei Yao
ISBN : 9781439834558
Genre : Mathematics
File Size : 71.93 MB
Format : PDF, ePub, Docs
Download : 485
Read : 663

Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach describes the control behavior of mechanical objects, such as wave equations, plates, and shells. It shows how the differential geometric approach is used when the coefficients of partial differential equations (PDEs) are variable in space (waves/plates), when the PDEs themselves are defined on curved surfaces (shells), and when the systems have quasilinear principal parts. To make the book self-contained, the author starts with the necessary background on Riemannian geometry. He then describes differential geometric energy methods that are generalizations of the classical energy methods of the 1980s. He illustrates how a basic computational technique can enable multiplier schemes for controls and provide mathematical models for shells in the form of free coordinates. The author also examines the quasilinearity of models for nonlinear materials, the dependence of controllability/stabilization on variable coefficients and equilibria, and the use of curvature theory to check assumptions. With numerous examples and exercises throughout, this book presents a complete and up-to-date account of many important advances in the modeling and control of vibrational and structural dynamics.

Author : John A. Burns
ISBN : 9781466571396
Genre : Mathematics
File Size : 88.48 MB
Format : PDF
Download : 845
Read : 914

Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions and discusses the importance of distinguishing between the necessary and sufficient conditions. In the first part of the text, the author develops the calculus of variations and provides complete proofs of the main results. He explains how the ideas behind the proofs are essential to the development of modern optimization and control theory. Focusing on optimal control problems, the second part shows how optimal control is a natural extension of the classical calculus of variations to more complex problems. By emphasizing the basic ideas and their mathematical development, this book gives you the foundation to use these mathematical tools to then tackle new problems. The text moves from simple to more complex problems, allowing you to see how the fundamental theory can be modified to address more difficult and advanced challenges. This approach helps you understand how to deal with future problems and applications in a realistic work environment.