ESSENTIAL MATHEMATICAL BIOLOGY SPRINGER UNDERGRADUATE MATHEMATICS SERIES

Download Essential Mathematical Biology Springer Undergraduate Mathematics Series ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to ESSENTIAL MATHEMATICAL BIOLOGY SPRINGER UNDERGRADUATE MATHEMATICS SERIES book pdf for free now.

Author : Nicholas F. Britton
ISBN : 9781447100492
Genre : Mathematics
File Size : 50.50 MB
Format : PDF, ePub
Download : 196
Read : 1093

This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.

Author : James D. Murray
ISBN : 9780387952284
Genre : Mathematics
File Size : 29.96 MB
Format : PDF, Kindle
Download : 713
Read : 489

This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS

This book is based on a one semester course that the authors have been teaching for several years, and includes two sets of case studies. The first includes chemostat models, predator-prey interaction, competition among species, the spread of infectious diseases, and oscillations arising from bifurcations. In developing these topics, readers will also be introduced to the basic theory of ordinary differential equations, and how to work with MATLAB without having any prior programming experience. The second set of case studies were adapted from recent and current research papers to the level of the students. Topics have been selected based on public health interest. This includes the risk of atherosclerosis associated with high cholesterol levels, cancer and immune interactions, cancer therapy, and tuberculosis. Readers will experience how mathematical models and their numerical simulations can provide explanations that guide biological and biomedical research. Considered to be the undergraduate companion to the more advanced book "Mathematical Modeling of Biological Processes" (A. Friedman, C.-Y. Kao, Springer – 2014), this book is geared towards undergraduate students with little background in mathematics and no biological background.

Author : Ronald W. Shonkwiler
ISBN : 9780387709840
Genre : Science
File Size : 65.30 MB
Format : PDF, ePub, Docs
Download : 390
Read : 1112

This text presents mathematical biology as a field with a unity of its own, rather than only the intrusion of one science into another. The book focuses on problems of contemporary interest, such as cancer, genetics, and the rapidly growing field of genomics.

Author : James D. Murray
ISBN : 0387952233
Genre : Mathematics
File Size : 69.72 MB
Format : PDF
Download : 626
Read : 428

Mathematical Biology is a richly illustrated textbook in an exciting and fast growing field. Providing an in-depth look at the practical use of math modeling, it features exercises throughout that are drawn from a variety of bioscientific disciplines - population biology, developmental biology, physiology, epidemiology, and evolution, among others. It maintains a consistent level throughout so that graduate students can use it to gain a foothold into this dynamic research area.

Author : Fred Brauer
ISBN : 9781475735161
Genre : Science
File Size : 86.94 MB
Format : PDF, Mobi
Download : 666
Read : 889

The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.

Mathematics for the Life Sciences provides present and future biologists with the mathematical concepts and tools needed to understand and use mathematical models and read advanced mathematical biology books. It presents mathematics in biological contexts, focusing on the central mathematical ideas, and providing detailed explanations. The author assumes no mathematics background beyond algebra and precalculus. Calculus is presented as a one-chapter primer that is suitable for readers who have not studied the subject before, as well as readers who have taken a calculus course and need a review. This primer is followed by a novel chapter on mathematical modeling that begins with discussions of biological data and the basic principles of modeling. The remainder of the chapter introduces the reader to topics in mechanistic modeling (deriving models from biological assumptions) and empirical modeling (using data to parameterize and select models). The modeling chapter contains a thorough treatment of key ideas and techniques that are often neglected in mathematics books. It also provides the reader with a sophisticated viewpoint and the essential background needed to make full use of the remainder of the book, which includes two chapters on probability and its applications to inferential statistics and three chapters on discrete and continuous dynamical systems. The biological content of the book is self-contained and includes many basic biology topics such as the genetic code, Mendelian genetics, population dynamics, predator-prey relationships, epidemiology, and immunology. The large number of problem sets include some drill problems along with a large number of case studies. The latter are divided into step-by-step problems and sorted into the appropriate section, allowing readers to gradually develop complete investigations from understanding the biological assumptions to a complete analysis.

Author : James N. Webb
ISBN : 1846286360
Genre : Mathematics
File Size : 67.5 MB
Format : PDF, ePub, Docs
Download : 423
Read : 657

The outstanding feature of this book is that it provides a unified account of three types of decision problem. It covers the basic ideas of decision theory, classical game theory, and evolutionary game theory in one volume. No background knowledge of economics or biology is required as examples have been carefully selected for their accessibility. Detailed solutions to the numerous exercises are provided at the back of the book, making it ideal for self-study. This introduction to game theory is intended as a first course for undergraduate students of mathematics, but it will also interest advanced students or researchers in biology and economics.

Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

Author : Richard H. Enns
ISBN : 9780387753409
Genre : Mathematics
File Size : 85.68 MB
Format : PDF, Mobi
Download : 723
Read : 176

Drawing examples from mathematics, physics, chemistry, biology, engineering, economics, medicine, politics, and sports, this book illustrates how nonlinear dynamics plays a vital role in our world. Examples cover a wide range from the spread and possible control of communicable diseases, to the lack of predictability in long-range weather forecasting, to competition between political groups and nations. After an introductory chapter that explores what it means to be nonlinear, the book covers the mathematical concepts such as limit cycles, fractals, chaos, bifurcations, and solitons, that will be applied throughout the book. Numerous computer simulations and exercises allow students to explore topics in greater depth using the Maple computer algebra system. The mathematical level of the text assumes prior exposure to ordinary differential equations and familiarity with the wave and diffusion equations. No prior knowledge of Maple is assumed. The book may be used at the undergraduate or graduate level to prepare science and engineering students for problems in the "real world", or for self-study by practicing scientists and engineers.