DISCRETE CHAOS SECOND EDITION WITH APPLICATIONS IN SCIENCE AND ENGINEERING

Download Discrete Chaos Second Edition With Applications In Science And Engineering ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to DISCRETE CHAOS SECOND EDITION WITH APPLICATIONS IN SCIENCE AND ENGINEERING book pdf for free now.

Author : Saber N. Elaydi
ISBN : 1584880023
Genre : Mathematics
File Size : 31.68 MB
Format : PDF, ePub
Download : 360
Read : 930

Over the last 15 years chaos has virtually exploded over the landscape of mathematics and showered its effects on nearly every scientific discipline. However, despite the large number of texts published on the subject, a need has persisted for a book accessible to readers of varying backgrounds that includes discussion of stability theory and emphasizes real-world applications. Discrete Chaos fills that need. With only calculus and linear algebra as prerequisites, this book offers a broad range of topics with a depth not often found in texts written at this level. The author presents a thorough exposition of both stability and chaos theories in both one and two dimensions. He offers a highly readable account of fractals and the mathematics behind them, and demonstrates a number of applications from a variety of fields. This unique treatment of chaos encourages readers to make mathematical discoveries of their own through computer experimentation. The author incorporates the use of Mapleä software throughout the book to aid in the solution of problems. All of the programs used in the book can be easily downloaded from the Internet. You'll find even the most difficult material in an elementary framework, easily accessible regardless of your background and specialization. With a multitude of exercises to further enhance the learning experience, Discrete Chaos offers the perfect vehicle for beginning the journey into the rich world of chaos.

Author : Saber N. Elaydi
ISBN : 9781584885924
Genre : Mathematics
File Size : 75.47 MB
Format : PDF, ePub, Mobi
Download : 328
Read : 840

While maintaining the lucidity of the first edition, Discrete Chaos, Second Edition: With Applications in Science and Engineering now includes many recent results on global stability, bifurcation, chaos, and fractals. The first five chapters provide the most comprehensive material on discrete dynamical systems, including trace-determinant stability, bifurcation analysis, and the detailed analysis of the center manifold theory. This edition also covers L-systems and the periodic structure of the bulbs in the Mandelbrot set as well as new applications in biology, chemistry, and physics. The principal improvements to this book are the additions of PHASER software on an accompanying CD-ROM and the MapleTM and Mathematica® code available for download online. Incorporating numerous new topics and technology not found in similar texts, Discrete Chaos, Second Edition presents a thorough, up-to-date treatment of the theory and applications of discrete dynamical systems.

Author : Stephen Lynch
ISBN : 9783319068206
Genre : Mathematics
File Size : 60.74 MB
Format : PDF, Docs
Download : 742
Read : 461

This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox® and the Symbolic Math toolbox®, including MuPAD. Features new to the second edition include · sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; · chapters on image processing and binary oscillator computing; · hundreds of new illustrations, examples, and exercises with solutions; and · over eighty up-to-date MATLAB program files and Simulink model files available online. These files were voted MATLAB Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equations. It will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a broad range of disciplines such as population dynamics, biology, chemistry, computing, economics, nonlinear optics, neural networks, and physics. Praise for the first edition Summing up, it can be said that this text allows the reader to have an easy and quick start to the huge field of dynamical systems theory. MATLAB/SIMULINK facilitate this approach under the aspect of learning by doing. —OR News/Operations Research Spectrum The MATLAB programs are kept as simple as possible and the author's experience has shown that this method of teaching using MATLAB works well with computer laboratory classes of small sizes.... I recommend ‘Dynamical Systems with Applications using MATLAB’ as a good handbook for a diverse readership: graduates and professionals in mathematics, physics, science and engineering. —Mathematica

Author : Robert Devaney
ISBN : 9780429981937
Genre : Science
File Size : 55.37 MB
Format : PDF, ePub, Mobi
Download : 924
Read : 634

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

Author : Paul S. Addison
ISBN : 9781482251333
Genre : Mathematics
File Size : 37.60 MB
Format : PDF, ePub, Mobi
Download : 424
Read : 1062

This second edition of The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance has been fully updated and revised to reflect recent developments in the theory and practical applications of wavelet transform methods. The book is designed specifically for the applied reader in science, engineering, medicine and finance. Newcomers to the subject will find an accessible and clear account of the theory of continuous and discrete wavelet transforms, while readers already acquainted with wavelets can use the book to broaden their perspective. One of the many strengths of the book is its use of several hundred illustrations, some in colour, to convey key concepts and their varied practical uses. Chapters exploring these practical applications highlight both the similarities and differences in wavelet transform methods across different disciplines and also provide a comprehensive list of over 1000 references that will serve as a valuable resource for further study. Paul Addison is a Technical Fellow with Medtronic, a global medical technology company. Previously, he was co-founder and CEO of start-up company, CardioDigital Ltd (and later co-founded its US subsidiary, CardioDigital Inc) - a company concerned with the development of novel wavelet-based methods for biosignal analysis. He has a master’s degree in engineering and a PhD in fluid mechanics, both from the University of Glasgow, Scotland (founded 1451). His former academic life as a tenured professor of fluids engineering included the output of a large number of technical papers, covering many aspects of engineering and bioengineering, and two textbooks: Fractals and Chaos: An Illustrated Course and the first edition of The Illustrated Wavelet Transform Handbook. At the time of publication, the author has over 100 issued US patents concerning a wide range of medical device technologies, many of these concerning the wavelet transform analysis of biosignals. He is both a Chartered Engineer and Chartered Physicist.

This long-awaited revised second edition of the standard reference on the subject has been considerably expanded to include such recent developments as novel control schemes, control of chaotic space-time patterns, control of noisy nonlinear systems, and communication with chaos, as well as promising new directions in research. The contributions from leading international scientists active in the field provide a comprehensive overview of our current level of knowledge on chaos control and its applications in physics, chemistry, biology, medicine, and engineering. In addition, they show the overlap with the traditional field of control theory in the engineering community. An interdisciplinary approach of interest to scientists and engineers working in a number of areas.

BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

Author : Saber N. Elaydi
ISBN : 9781475791686
Genre : Mathematics
File Size : 56.31 MB
Format : PDF
Download : 216
Read : 312

This book grew out of lecture notes I used in a course on difference equations that I taught at Trinity University for the past five years. The classes were largely pop ulated by juniors and seniors majoring in Mathematics, Engineering, Chemistry, Computer Science, and Physics. This book is intended to be used as a textbook for a course on difference equations at the level of both advanced undergraduate and beginning graduate. It may also be used as a supplement for engineering courses on discrete systems and control theory. The main prerequisites for most of the material in this book are calculus and linear algebra. However, some topics in later chapters may require some rudiments of advanced calculus. Since many of the chapters in the book are independent, the instructor has great flexibility in choosing topics for the first one-semester course. A diagram showing the interdependence of the chapters in the book appears following the preface. This book presents the current state of affairs in many areas such as stability, Z-transform, asymptoticity, oscillations and control theory. However, this book is by no means encyclopedic and does not contain many important topics, such as Numerical Analysis, Combinatorics, Special functions and orthogonal polyno mials, boundary value problems, partial difference equations, chaos theory, and fractals. The nonselection of these topics is dictated not only by the limitations imposed by the elementary nature of this book, but also by the research interest (or lack thereof) of the author.

Author : Jacques M. Bahi
ISBN : 9781466554511
Genre : Computers
File Size : 72.45 MB
Format : PDF
Download : 859
Read : 1115

For computer scientists, especially those in the security field, the use of chaos has been limited to the computation of a small collection of famous but unsuitable maps that offer no explanation of why chaos is relevant in the considered contexts. Discrete Dynamical Systems and Chaotic Machines: Theory and Applications shows how to make finite machines, such as computers, neural networks, and wireless sensor networks, work chaotically as defined in a rigorous mathematical framework. Taking into account that these machines must interact in the real world, the authors share their research results on the behaviors of discrete dynamical systems and their use in computer science. Covering both theoretical and practical aspects, the book presents: Key mathematical and physical ideas in chaos theory Computer science fundamentals, clearly establishing that chaos properties can be satisfied by finite state machines Concrete applications of chaotic machines in computer security, including pseudorandom number generators, hash functions, digital watermarking, and steganography Concrete applications of chaotic machines in wireless sensor networks, including secure data aggregation and video surveillance Until the authors’ recent research, the practical implementation of the mathematical theory of chaos on finite machines raised several issues. This self-contained book illustrates how chaos theory enables the study of computer security problems, such as steganalysis, that otherwise could not be tackled. It also explains how the theory reinforces existing cryptographically secure tools and schemes.

Author : Andrzej Lasota
ISBN : 9781461242864
Genre : Mathematics
File Size : 42.22 MB
Format : PDF, ePub
Download : 248
Read : 990

The first edition of this book was originally published in 1985 under the ti tle "Probabilistic Properties of Deterministic Systems. " In the intervening years, interest in so-called "chaotic" systems has continued unabated but with a more thoughtful and sober eye toward applications, as befits a ma turing field. This interest in the serious usage of the concepts and techniques of nonlinear dynamics by applied scientists has probably been spurred more by the availability of inexpensive computers than by any other factor. Thus, computer experiments have been prominent, suggesting the wealth of phe nomena that may be resident in nonlinear systems. In particular, they allow one to observe the interdependence between the deterministic and probabilistic properties of these systems such as the existence of invariant measures and densities, statistical stability and periodicity, the influence of stochastic perturbations, the formation of attractors, and many others. The aim of the book, and especially of this second edition, is to present recent theoretical methods which allow one to study these effects. We have taken the opportunity in this second edition to not only correct the errors of the first edition, but also to add substantially new material in five sections and a new chapter.