DIFFERENTIAL EQUATIONS WITH MAXIMA CHAPMAN HALL CRC PURE AND APPLIED MATHEMATICS

Download Differential Equations With Maxima Chapman Hall Crc Pure And Applied Mathematics ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to DIFFERENTIAL EQUATIONS WITH MAXIMA CHAPMAN HALL CRC PURE AND APPLIED MATHEMATICS book pdf for free now.

Author : Bashir Ahmad
ISBN : 9783319521411
Genre : Mathematics
File Size : 38.94 MB
Format : PDF, Kindle
Download : 674
Read : 655

This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.

In this monograph as a mathematical apparatus are used and investigated several classes of differential equations. The most significant feature of these differential equations is the presence of impulsive effects. The main goals and the results achieved in the monograph are related to the use of this class of equation for an adequate description of the dynamics of several types of processes that are subject to discrete external interventions and change the speed of development. In all proposed models the following requirements have met: 1) Presented and studied mathematical models in the book are extensions of existing known in the literature models of real objects and related processes. 2) Generalizations of the studied models are related to the admission of external impulsive effects, which lead to “jump-like” change the quantity characteristics of the described object as well as the rate of its modification. 3) Sufficient conditions which guarantee certain qualities of the dynamics of the quantities of the modeled objects are found. 4) Studies of the qualities of the modification of the modeled objects are possible to be successful by differential equations with variable structure and impulsive effects. 5) The considerations relating to the existence of the studied properties of dynamic objects cannot be realized without introducing new concepts and proving of appropriate theorems. The main objectives can be conditionally divided into several parts: 1) New classes of differential equations with variable structure and impulses are introduced and studied; 2) Specific properties of the above-mentioned class of differential equations are introduced and studied. The present monograph consists of an introduction and seven chapters. Each chapter contains several sections.

Author : Drumi D. Bainov
ISBN : 9781439867587
Genre : Mathematics
File Size : 41.39 MB
Format : PDF, ePub, Docs
Download : 933
Read : 901

Differential equations with "maxima"—differential equations that contain the maximum of the unknown function over a previous interval—adequately model real-world processes whose present state significantly depends on the maximum value of the state on a past time interval. More and more, these equations model and regulate the behavior of various technical systems on which our ever-advancing, high-tech world depends. Understanding and manipulating the theoretical results and investigations of differential equations with maxima opens the door to enormous possibilities for applications to real-world processes and phenomena. Presenting the qualitative theory and approximate methods, Differential Equations with Maxima begins with an introduction to the mathematical apparatus of integral inequalities involving maxima of unknown functions. The authors solve various types of linear and nonlinear integral inequalities, study both cases of single and double integral inequalities, and illustrate several direct applications of solved inequalities. They also present general properties of solutions as well as existence results for initial value and boundary value problems. Later chapters offer stability results with definitions of different types of stability with sufficient conditions and include investigations based on appropriate modifications of the Razumikhin technique by applying Lyapunov functions. The text covers the main concepts of oscillation theory and methods applied to initial and boundary value problems, combining the method of lower and upper solutions with appropriate monotone methods and introducing algorithms for constructing sequences of successive approximations. The book concludes with a systematic development of the averaging method for differential equations with maxima as applied to first-order and neutral equations. It also explores different schemes for averaging, partial averaging, partially additive averaging, and partially multiplicative averaging. A solid overview of the field, this book guides theoretical and applied researchers in mathematics toward further investigations and applications of these equations for a more accurate study of real-world problems.

Author : Lawrence Corwin
ISBN : 0824792793
Genre : Mathematics
File Size : 33.77 MB
Format : PDF, Kindle
Download : 937
Read : 319

Calculus in Vector Spaces addresses linear algebra from the basics to the spectral theorem and examines a range of topics in multivariable calculus. This second edition introduces, among other topics, the derivative as a linear transformation, presents linear algebra in a concrete context based on complementary ideas in calculus, and explains differential forms on Euclidean space, allowing for Green's theorem, Gauss's theorem, and Stokes's theorem to be understood in a natural setting. Mathematical analysts, algebraists, engineers, physicists, and students taking advanced calculus and linear algebra courses should find this book useful.