## Data Analysis

Author : D. S. Sivia
ISBN : 0198518897
Genre : Science
File Size : 26.88 MB
Format : PDF, Mobi

Statistics lectures have often been viewed with trepidation by engineering and science students taking an ancillary course in this subject. Whereas there are many texts showing "how" statistical methods are applied, few provide a clear explanation for non-statisticians of how the principlesof data analysis can be based on probability theory. Data Analysis: A Bayesian Tutorial provides such a text, putting emphasis as much on understanding "why" and "when" certain statistical procedures should be used as "how". This difference in approach makes the text ideal as a tutorial guide forsenior undergraduates and research students, in science and engineering. After explaining the basic principles of Bayesian probability theory, their use is illustrated with a variety of examples ranging from elementary parameter estimation to image processing. With its central emphasis on a fewfundamental rules, this book takes the mystery out of statistics by providing a clear rationale for some of the most widely-used procedures.
Category: Science

## Data Analysis

Author : Devinderjit Sivia
ISBN : 9780198568315
Genre : Mathematics
File Size : 53.28 MB
Format : PDF, Mobi

Statistics lectures have been a source of much bewilderment and frustration for generations of students. This book attempts to remedy the situation by expounding a logical and unified approach to the whole subject of data analysis. This text is intended as a tutorial guide for senior undergraduates and research students in science and engineering. After explaining the basic principles of Bayesian probability theory, their use is illustrated with a variety of examples ranging from elementary parameter estimation to image processing. Other topics covered include reliability analysis, multivariate optimization, least-squares and maximum likelihood, error-propagation, hypothesis testing, maximum entropy and experimental design. The Second Edition of this successful tutorial book contains a new chapter on extensions to the ubiquitous least-squares procedure, allowing for the straightforward handling of outliers and unknown correlated noise, and a cutting-edge contribution from John Skilling on a novel numerical technique for Bayesian computation called 'nested sampling'.
Category: Mathematics

## Doing Bayesian Data Analysis

Author : John Kruschke
ISBN : 0123814863
Genre : Mathematics
File Size : 61.89 MB
Format : PDF, Kindle

There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis tractable and accessible to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS, is for first year graduate students or advanced undergraduates and provides an accessible approach, as all mathematics is explained intuitively and with concrete examples. It assumes only algebra and ‘rusty’ calculus. Unlike other textbooks, this book begins with the basics, including essential concepts of probability and random sampling. The book gradually climbs all the way to advanced hierarchical modeling methods for realistic data. The text provides complete examples with the R programming language and BUGS software (both freeware), and begins with basic programming examples, working up gradually to complete programs for complex analyses and presentation graphics. These templates can be easily adapted for a large variety of students and their own research needs.The textbook bridges the students from their undergraduate training into modern Bayesian methods. Accessible, including the basics of essential concepts of probability and random sampling Examples with R programming language and BUGS software Comprehensive coverage of all scenarios addressed by non-bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). Coverage of experiment planning R and BUGS computer programming code on website Exercises have explicit purposes and guidelines for accomplishment
Category: Mathematics

## Bayesian Logical Data Analysis For The Physical Sciences

Author : Phil Gregory
ISBN : 9781139444286
Genre : Mathematics
File Size : 50.73 MB
Format : PDF, ePub

Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica® notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at www.cambridge.org/9780521150125.
Category: Mathematics

## Essential Mathematical Methods For The Physical Sciences

Author : K. F. Riley
ISBN : 9781139492942
Genre : Science
File Size : 57.62 MB
Format : PDF, Mobi

The mathematical methods that physical scientists need for solving substantial problems in their fields of study are set out clearly and simply in this tutorial-style textbook. Students will develop problem-solving skills through hundreds of worked examples, self-test questions and homework problems. Each chapter concludes with a summary of the main procedures and results and all assumed prior knowledge is summarized in one of the appendices. Over 300 worked examples show how to use the techniques and around 100 self-test questions in the footnotes act as checkpoints to build student confidence. Nearly 400 end-of-chapter problems combine ideas from the chapter to reinforce the concepts. Hints and outline answers to the odd-numbered problems are given at the end of each chapter, with fully-worked solutions to these problems given in the accompanying Student Solutions Manual. Fully-worked solutions to all problems, password-protected for instructors, are available at www.cambridge.org/essential.
Category: Science

## Bayesian Inference And Maximum Entropy Methods In Science And Engineering

Author : Kevin Hunter Knuth
ISBN : 0735404682
Genre : Computers
File Size : 27.72 MB
Format : PDF

For over 25 years the MaxEnt workshops have explored the use of Bayesian probability theory, entropy and information theory in scientific and engineering applications. This volume considers Methods, Applications, and Foundations. Application areas include, but are not limited to: astronomy, physics, chemistry, biology, earth science, and engineering.
Category: Computers

## Bayesian Analysis With Python

Author : Osvaldo Martin
ISBN : 9781785889851
Genre : Computers
File Size : 68.79 MB
Format : PDF

Unleash the power and flexibility of the Bayesian framework About This Book Simplify the Bayes process for solving complex statistical problems using Python; Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises; Learn how and when to use Bayesian analysis in your applications with this guide. Who This Book Is For Students, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed. What You Will Learn Understand the essentials Bayesian concepts from a practical point of view Learn how to build probabilistic models using the Python library PyMC3 Acquire the skills to sanity-check your models and modify them if necessary Add structure to your models and get the advantages of hierarchical models Find out how different models can be used to answer different data analysis questions When in doubt, learn to choose between alternative models. Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression. Learn how to think probabilistically and unleash the power and flexibility of the Bayesian framework In Detail The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems. Style and approach Bayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.
Category: Computers

## Proceedings Of The Asme Heat Transfer Division

Author :
ISBN : UOM:39015064355236
Genre : Heat
File Size : 31.63 MB
Format : PDF, Kindle

Category: Heat

## Proceedings Of The Asme Heat Transfer Division 2005

Author :
ISBN : CORNELL:31924102785957
Genre : Heat
File Size : 76.35 MB
Format : PDF

Category: Heat

## Bayes Rule

Author : James V. Stone
ISBN : 9780956372840
Genre : Bayesian statistical decision theory
File Size : 78.39 MB
Format : PDF, Kindle