COMPLEX ANALYSIS A MODERN FIRST COURSE IN FUNCTION THEORY

Download Complex Analysis A Modern First Course In Function Theory ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to COMPLEX ANALYSIS A MODERN FIRST COURSE IN FUNCTION THEORY book pdf for free now.

Author : Jerry R. Muir
ISBN : 9781118705223
Genre : Mathematics
File Size : 58.32 MB
Format : PDF, Kindle
Download : 908
Read : 424

This book concisely addresses the classical results of the field, emphasizes the beauty, power, and counterintuitive nature of the subject, and moves the notion of power series front and center, giving readers a primary tool to deal with problems from modern function theory. Uniquely defines analyticity in terms of power series (as opposed to differentiability), making power series a central concept and tool to solve problems Features many “counterintuitive” concepts as a learning tool, such as addressing Liouville's Theorem, the factorization of analytic function, the Open Mapping Theorem, and the Maximum Principle in quick succession early on in the book in an attempt to prepare readers for the development of the Cauchy integral theory Classroom tested for 10+ years by the author at the University of Scranton as well as colleagues at Rose-Hulman Institute of Technology and Adams State College Presents sequences and series early on, distinguishes complex analysis from real analysis and calculus, and emphasizes geometry when analyzing complex functions Contains appendices for basic notation of sets and functions as well as necessary topics from advanced calculus, such as Leibnitz's Rule and Fubini's Theorem An Instructor's Manual containing all solutions is available via request to the Publisher. Written with a reader-friendly approach and provides a wide range of exercises and numerous figures throughout, allowing readers to gain intuition for solving problems.

Author : Robert Everist Greene
ISBN : 0821839624
Genre : Mathematics
File Size : 68.38 MB
Format : PDF, ePub, Docs
Download : 247
Read : 765

This book is a text for a first-year graduate course in complex analysis. It is a modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors."--BOOK JACKET.

Author : David C. Ullrich
ISBN : 9780821844793
Genre : Mathematics
File Size : 27.46 MB
Format : PDF, Mobi
Download : 137
Read : 1035

Perhaps uniquely among mathematical topics, complex analysis presents the student with the opportunity to learn a thoroughly developed subject that is rich in both theory and applications. Even in an introductory course, the theorems and techniques can have elegant formulations. But for any of these profound results, the student is often left asking: What does it really mean? Where does it come from? In Complex Made Simple, David Ullrich shows the student how to think like an analyst. In many cases, results are discovered or derived, with an explanation of how the students might have found the theorem on their own. Ullrich explains why a proof works. He will also, sometimes, explain why a tempting idea does not work. Complex Made Simple looks at the Dirichlet problem for harmonic functions twice: once using the Poisson integral for the unit disk and again in an informal section on Brownian motion, where the reader can understand intuitively how the Dirichlet problem works for general domains.Ullrich also takes considerable care to discuss the modular group, modular function, and covering maps, which become important ingredients in his modern treatment of the often-overlooked original proof of the Big Picard Theorem. This book is suitable for a first-year course in complex analysis. The exposition is aimed directly at the students, with plenty of details included. The prerequisite is a good course in advanced calculus or undergraduate analysis.

Author : Donald Sarason
ISBN : 9780821844281
Genre : Mathematics
File Size : 52.51 MB
Format : PDF, ePub
Download : 555
Read : 543

Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Complex Function Theory.

Author : Ian Stewart
ISBN : 0521287634
Genre : Mathematics
File Size : 44.6 MB
Format : PDF, ePub, Mobi
Download : 562
Read : 388

This is a very successful textbook for undergraduate students of pure mathematics. Students often find the subject of complex analysis very difficult. Here the authors, who are experienced and well-known expositors, avoid many of such difficulties by using two principles: (1) generalising concepts familiar from real analysis; (2) adopting an approach which exhibits and makes use of the rich geometrical structure of the subject. An opening chapter provides a brief history of complex analysis which sets it in context and provides motivation.

Author : John Stalker
ISBN : 9780817649197
Genre : Mathematics
File Size : 83.41 MB
Format : PDF, ePub, Docs
Download : 225
Read : 856

All modem introductions to complex analysis follow, more or less explicitly, the pattern laid down in Whittaker and Watson [75]. In "part I'' we find the foundational material, the basic definitions and theorems. In "part II" we find the examples and applications. Slowly we begin to understand why we read part I. Historically this is an anachronism. Pedagogically it is a disaster. Part II in fact predates part I, so clearly it can be taught first. Why should the student have to wade through hundreds of pages before finding out what the subject is good for? In teaching complex analysis this way, we risk more than just boredom. Beginning with a series of unmotivated definitions gives a misleading impression of complex analy sis in particular and of mathematics in general. The classical theory of analytic functions did not arise from the idle speculation of bored mathematicians on the possible conse quences of an arbitrary set of definitions; it was the natural, even inevitable, consequence of the practical need to answer questions about specific examples. In standard texts, after hundreds of pages of theorems about generic analytic functions with only the rational and trigonometric functions as examples, students inevitably begin to believe that the purpose of complex analysis is to produce more such theorems. We require introductory com plex analysis courses of our undergraduates and graduates because it is useful both within mathematics and beyond.

Author : Steven George Krantz
ISBN : 9780821827246
Genre : Mathematics
File Size : 44.31 MB
Format : PDF, Mobi
Download : 504
Read : 1052

The theory of several complex variables can be studied from several different perspectives. In this book, Steven Krantz approaches the subject from the point of view of a classical analyst, emphasizing its function-theoretic aspects. He has taken particular care to write the book with the student in mind, with uniformly extensive and helpful explanations, numerous examples, and plentiful exercises of varying difficulty. In the spirit of a student-oriented text, Krantz begins with an introduction to the subject, including an insightful comparison of analysis of several complex variables with the more familiar theory of one complex variable. The main topics in the book include integral formulas, convexity and pseudoconvexity, methods from harmonic analysis, and several aspects of the $\overline{\partial}$ problem. Some further topics are zero sets of holomorphic functions, estimates, partial differential equations, approximation theory, the boundary behavior of holomorphic functions, inner functions, invariant metrics, and holomorphic mappings. While due attention is paid to algebraic aspects of several complex variables (sheaves, Cousin problems, etc.), the student with a background in real and complex variable theory, harmonic analysis, and differential equations will be most comfortable with this treatment. This book is suitable for a first graduate course in several complex variables.

Author : Frank Smithies
ISBN : 052159278X
Genre : Mathematics
File Size : 28.49 MB
Format : PDF, Kindle
Download : 129
Read : 813

Dr Smithies' analysis of the process whereby Cauchy created the basic structure of complex analysis, begins by describing the 18th century background. He then proceeds to examine the stages of Cauchy's own work, culminating in the proof of the residue theorem. Controversies associated with the the birth of the subject are also considered in detail. Throughout, new light is thrown on Cauchy's thinking during this watershed period. This authoritative book is the first to make use of the whole spectrum of available original sources.

Now available in paperback, this successful radical approach to complex analysis replaces the standard calculational arguments with new geometric ones. With several hundred diagrams, and far fewer prerequisites than usual, this is the first visual intuitive introduction to complex analysis. Although designed for use by undergraduates in mathematics and science, the novelty of the approach will also interest professional mathematicians.

This book is intended as a textbook for a first course in the theory of functions of one complex variable for students who are mathematically mature enough to understand and execute E - I) arguments. The actual pre requisites for reading this book are quite minimal; not much more than a stiff course in basic calculus and a few facts about partial derivatives. The topics from advanced calculus that are used (e.g., Leibniz's rule for differ entiating under the integral sign) are proved in detail. Complex Variables is a subject which has something for all mathematicians. In addition to having applications to other parts of analysis, it can rightly claim to be an ancestor of many areas of mathematics (e.g., homotopy theory, manifolds). This view of Complex Analysis as "An Introduction to Mathe matics" has influenced the writing and selection of subject matter for this book. The other guiding principle followed is that all definitions, theorems, etc.