ALL OF NONPARAMETRIC STATISTICS SPRINGER TEXTS IN STATISTICS

Download All Of Nonparametric Statistics Springer Texts In Statistics ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to ALL OF NONPARAMETRIC STATISTICS SPRINGER TEXTS IN STATISTICS book pdf for free now.

All Of Nonparametric Statistics

Author : Larry Wasserman
ISBN : 0387306234
Genre : Mathematics
File Size : 35.2 MB
Format : PDF, ePub, Docs
Download : 602
Read : 645

This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.
Category: Mathematics

All Of Statistics

Author : Larry Wasserman
ISBN : 9780387217369
Genre : Mathematics
File Size : 21.96 MB
Format : PDF, Mobi
Download : 978
Read : 966

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Category: Mathematics

Introduction To Nonparametric Estimation

Author : Alexandre B. Tsybakov
ISBN : 9780387790527
Genre : Mathematics
File Size : 38.8 MB
Format : PDF, Kindle
Download : 413
Read : 690

Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.
Category: Mathematics

Nonparametric Functional Data Analysis

Author : Frédéric Ferraty
ISBN : 9780387366203
Genre : Mathematics
File Size : 47.59 MB
Format : PDF, Mobi
Download : 822
Read : 879

Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.
Category: Mathematics

Nonparametrics

Author : Erich Leo Lehmann
ISBN : 0387352120
Genre : Mathematics
File Size : 89.83 MB
Format : PDF, ePub, Docs
Download : 683
Read : 242

Rank tests form a class of statistical procedures that have the advantage of great simplicity combined with surprising power. Since their development in the 1940s and 1950s, they have taken their place as strong competitors of the more classical normal theory methods. Rank tests apply only to relatively simple solutions, such as one-, tw0-, and s-sample problems, and testing for independence and randomness, but for these situations they are often the method of choice.This reprint of a classic reference book describes these tests and the estimating procedures derived from them, and gives an account of their properties. Even though the field of rank tests has undergone little change, important new methodologies have sprung up that also serve the purpose of freeing statistics from the unrealistic model assumptions that so frequently invalidate its applications. All the tests discussed here are now available in a variety of statistical packages. E.L. Lehmann is Professor of Statistics Emeritus at the University of California, Berkeley. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and the recipient of honorary degrees from the University of Leiden, The Netherlands and the University of Chicago. He is the author of Elements of Large-Sample Theory, Theory of Point Estimation, Second Edition (with George Casella), and Testing Statistical Hypotheses, Third Edition (with Joseph P. Romano).
Category: Mathematics

Nonparametric Statistical Inference Fifth Edition

Author : Jean Dickinson Gibbons
ISBN : 9781439896129
Genre : Mathematics
File Size : 62.97 MB
Format : PDF, Kindle
Download : 340
Read : 171

Proven Material for a Course on the Introduction to the Theory and/or on the Applications of Classical Nonparametric Methods Since its first publication in 1971, Nonparametric Statistical Inference has been widely regarded as the source for learning about nonparametric statistics. The fifth edition carries on this tradition while thoroughly revising at least 50 percent of the material. New to the Fifth Edition Updated and revised contents based on recent journal articles in the literature A new section in the chapter on goodness-of-fit tests A new chapter that offers practical guidance on how to choose among the various nonparametric procedures covered Additional problems and examples Improved computer figures This classic, best-selling statistics book continues to cover the most commonly used nonparametric procedures. The authors carefully state the assumptions, develop the theory behind the procedures, and illustrate the techniques using realistic research examples from the social, behavioral, and life sciences. For most procedures, they present the tests of hypotheses, confidence interval estimation, sample size determination, power, and comparisons of other relevant procedures. The text also gives examples of computer applications based on Minitab, SAS, and StatXact and compares these examples with corresponding hand calculations. The appendix includes a collection of tables required for solving the data-oriented problems. Nonparametric Statistical Inference, Fifth Edition provides in-depth yet accessible coverage of the theory and methods of nonparametric statistical inference procedures. It takes a practical approach that draws on scores of examples and problems and minimizes the theorem-proof format. Jean Dickinson Gibbons was recently interviewed regarding her generous pledge to Virginia Tech.
Category: Mathematics

Asymptotic Theory Of Statistics And Probability

Author : Anirban DasGupta
ISBN : 9780387759708
Genre : Mathematics
File Size : 84.74 MB
Format : PDF, Kindle
Download : 958
Read : 636

This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.
Category: Mathematics

Intuitive Introductory Statistics

Author : Douglas A. Wolfe
ISBN : 9783319560724
Genre : Mathematics
File Size : 54.93 MB
Format : PDF, ePub
Download : 637
Read : 1288

This textbook is designed to give an engaging introduction to statistics and the art of data analysis. The unique scope includes, but also goes beyond, classical methodology associated with the normal distribution. What if the normal model is not valid for a particular data set? This cutting-edge approach provides the alternatives. It is an introduction to the world and possibilities of statistics that uses exercises, computer analyses, and simulations throughout the core lessons. These elementary statistical methods are intuitive. Counting and ranking features prominently in the text. Nonparametric methods, for instance, are often based on counts and ranks and are very easy to integrate into an introductory course.​ The ease of computation with advanced calculators and statistical software, both of which factor into this text, allows important techniques to be introduced earlier in the study of statistics. This book's novel scope also includes measuring symmetry with Walsh averages, finding a nonparametric regression line, jackknifing, and bootstrapping​. Concepts and techniques are explored through practical problems. Quantitative reasoning is at the core of so many professions and academic disciplines, and this book opens the door to the most modern possibilities.
Category: Mathematics

Advanced Linear Modeling

Author : Ronald Christensen
ISBN : 9781475738476
Genre : Mathematics
File Size : 37.25 MB
Format : PDF, Mobi
Download : 861
Read : 406

This book introduces several topics related to linear model theory, including: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. This second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subjects and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure.
Category: Mathematics