ADVANCED CALCULUS A GEOMETRIC VIEW UNDERGRADUATE TEXTS IN MATHEMATICS

Download Advanced Calculus A Geometric View Undergraduate Texts In Mathematics ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to ADVANCED CALCULUS A GEOMETRIC VIEW UNDERGRADUATE TEXTS IN MATHEMATICS book pdf for free now.

Author : James J. Callahan
ISBN : 144197332X
Genre : Mathematics
File Size : 24.69 MB
Format : PDF, ePub, Docs
Download : 800
Read : 544

With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.

This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: •The p-norms on vector space and their equivalence •The Weierstrass and Stone-Weierstrass approximation theorems •The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables •The Implicit Function Theorem for a system of equations, proved via Banach’s Fixed Point Theorem •Applications to Ordinary Differential Equations •Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.

Author : Patrick Fitzpatrick
ISBN : 0821847910
Genre : Mathematics
File Size : 27.22 MB
Format : PDF, ePub
Download : 167
Read : 1188

Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables. Special attention has been paid to the motivation for proofs. Selected topics, such as the Picard Existence Theorem for differential equations, have been included in such a way that selections may be made while preserving a fluid presentation of the essential material. Supplemented with numerous exercises, Advanced Calculus is a perfect book for undergraduate students of analysis.

Author : Andrew McInerney
ISBN : 9781461477327
Genre : Mathematics
File Size : 26.24 MB
Format : PDF, Mobi
Download : 213
Read : 758

Differential geometry arguably offers the smoothest transition from the standard university mathematics sequence of the first four semesters in calculus, linear algebra, and differential equations to the higher levels of abstraction and proof encountered at the upper division by mathematics majors. Today it is possible to describe differential geometry as "the study of structures on the tangent space," and this text develops this point of view. This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to explore those consequences.

At the present time, the average undergraduate mathematics major finds mathematics heavily compartmentalized. After the calculus, he takes a course in analysis and a course in algebra. Depending upon his interests (or those of his department), he takes courses in special topics. Ifhe is exposed to topology, it is usually straightforward point set topology; if he is exposed to geom etry, it is usually classical differential geometry. The exciting revelations that there is some unity in mathematics, that fields overlap, that techniques of one field have applications in another, are denied the undergraduate. He must wait until he is well into graduate work to see interconnections, presumably because earlier he doesn't know enough. These notes are an attempt to break up this compartmentalization, at least in topology-geometry. What the student has learned in algebra and advanced calculus are used to prove some fairly deep results relating geometry, topol ogy, and group theory. (De Rham's theorem, the Gauss-Bonnet theorem for surfaces, the functorial relation of fundamental group to covering space, and surfaces of constant curvature as homogeneous spaces are the most note worthy examples.) In the first two chapters the bare essentials of elementary point set topology are set forth with some hint ofthe subject's application to functional analysis.

Author : David Bachman
ISBN : 9780817683047
Genre : Mathematics
File Size : 79.87 MB
Format : PDF, ePub, Docs
Download : 233
Read : 521

This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.

Author : Heinrich W. Guggenheimer
ISBN : 9780486157207
Genre : Mathematics
File Size : 54.42 MB
Format : PDF, ePub, Docs
Download : 339
Read : 656

This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.

Author : Andrew Wohlgemuth
ISBN : 9780486141688
Genre : Mathematics
File Size : 33.44 MB
Format : PDF, ePub
Download : 447
Read : 639

This undergraduate text teaches students what constitutes an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. 1990 edition.

Author : James J. Callahan
ISBN : 0387986413
Genre : Computers
File Size : 26.38 MB
Format : PDF, ePub, Mobi
Download : 435
Read : 948

Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.

Author : Haim Brezis
ISBN : 9789960549842
Genre : Foreign Language Study
File Size : 57.22 MB
Format : PDF, Mobi
Download : 218
Read : 774

يتناول هذا المؤلف من جديد ـ بشكل أكثر دقة وتصميماً ـ مادة مُدرَّسة بجامعة بيار وماري كوري على مستوى البكالريوس، وهو يفترض معرفة العناصر الأساسية من الطوبولوجيا العامة والتكامل الحسابي والتفاضلي. يتعرض الجزء الأول من الكتاب (الفصول 1-7) إلى جوانب (مجردة) من التحليل الدالي، أما الجزء الثاني من المادة (الفصول 8-10) فيتعلق بدراسة فضاءات دالية (ملموسة) مستعملة في نظرية المعادلات التفاضلية الجزئية، تبين كيف يمكن لمبرهنات وجود(مجردة) أن تسهم في حل معادلات تفاضلية جزئية. هناك ارتباط وثيق بين هذين الفرعين من التحليل: تاريخياً، تطور التحليل الدالي(المجرد) ليجيب عن أسئلة أثيرت عند حل المعادلات التفاضلية الجزئية، وفي المقابل أدى تطور التحليل الدالي (المجرد) إلى تحفيز كبير لنظرية المعادلات التفاضلية الجزئية. سيكون هذا الكتاب مفيداً لكل من الطلبة المهتمين بالرياضيات البحثية، وكذا أولئك المهتمين بالتوجه نحو الرياضيات التطبيقية. العبيكان للنشر