A NEW APPROACH TO DIFFERENTIAL GEOMETRY USING CLIFFORDS GEOMETRIC ALGEBRA

Download A New Approach To Differential Geometry Using Cliffords Geometric Algebra ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to A NEW APPROACH TO DIFFERENTIAL GEOMETRY USING CLIFFORDS GEOMETRIC ALGEBRA book pdf for free now.

A New Approach To Differential Geometry Using Clifford S Geometric Algebra

Author : John Snygg
ISBN : 9780817682828
Genre : Mathematics
File Size : 60.75 MB
Format : PDF, ePub, Docs
Download : 867
Read : 295

Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.
Category: Mathematics

A New Approach To Differential Geometry Using Clifford S Geometric Algebra

Author : John Snygg
ISBN : 9780817682835
Genre : Mathematics
File Size : 47.95 MB
Format : PDF, ePub, Mobi
Download : 575
Read : 1010

Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.
Category: Mathematics

Clifford Algebra To Geometric Calculus

Author : David Hestenes
ISBN : 9027725616
Genre : Mathematics
File Size : 80.85 MB
Format : PDF, ePub, Docs
Download : 503
Read : 1237

Geometric Calculus is a language for expressing and analyzing the full range of geometric concepts in mathematics. Clifford Algebra provides the grammar. Complex number, quaternions, matrix algebra, vector, tensor and spinor calculus and differential forms are integrated into a single comprehensive system. The geometric calculus developed in this book has the following features: a systematic development of definitions, concepts and theorems needed to apply the calculus easily and effectively to almost any branch of mathematics or physics; a formulation of linear algebra capable of details computations without matrices or coordinates; new proofs and treatments of canonical forms including an extensive discussion of spinor representations of rotations in Euclidean n-space; a new concept of differentiation which makes it possible to formulate calculus on manifolds and carry out complete calculations of such thinks as the Jacobian of a transformation without resorting to coordinates; a coordinate-free approach to differential geometry featuring a new quantity, the shape tensor, from which the curvature tensor can be computed without a connection; a formulation of integration theory based on a concept of directed measure, with new results including a generalization of Cauchy's integral formula to n-dimension spaces and explicit integral formula for the inverse of a transformation; a new approach to Lie groups and Lie algebras. --From cover.
Category: Mathematics

Clifford Geometric Algebras

Author : William Baylis
ISBN : 9781461241041
Genre : Science
File Size : 42.36 MB
Format : PDF, ePub
Download : 423
Read : 433

This volume is an outgrowth of the 1995 Summer School on Theoretical Physics of the Canadian Association of Physicists (CAP), held in Banff, Alberta, in the Canadian Rockies, from July 30 to August 12,1995. The chapters, based on lectures given at the School, are designed to be tutorial in nature, and many include exercises to assist the learning process. Most lecturers gave three or four fifty-minute lectures aimed at relative novices in the field. More emphasis is therefore placed on pedagogy and establishing comprehension than on erudition and superior scholarship. Of course, new and exciting results are presented in applications of Clifford algebras, but in a coherent and user-friendly way to the nonspecialist. The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others.
Category: Science

Geometric Algebra With Applications In Science And Engineering

Author : Eduardo Bayro Corrochano
ISBN : 9781461201595
Genre : Mathematics
File Size : 66.11 MB
Format : PDF, Mobi
Download : 242
Read : 1210

The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling of disbelief that the fundamental geometric product of vectors could have been left out of his undergraduate mathematics education. Geometric algebra provides a rich, general mathematical framework for the develop ment of multilinear algebra, projective and affine geometry, calculus on a manifold, the representation of Lie groups and Lie algebras, the use of the horosphere and many other areas. This book is addressed to a broad audience of applied mathematicians, physicists, computer scientists, and engineers.
Category: Mathematics

Understanding Geometric Algebra For Electromagnetic Theory

Author : John W. Arthur
ISBN : 9780470941638
Genre : Mathematics
File Size : 34.2 MB
Format : PDF, Mobi
Download : 627
Read : 1295

"This book covers all of the information needed to design LEDs into end-products. It is a practical guide, primarily explaning how things are done by practicing engineers. Equations are used only for practical calculations, and are kept to the level of high-school algebra. There are numerous drawings and schematics showing how things such as measurements are actually made, and showing curcuits that actually work. There are practical notes and examples embedded in the text that give pointers and how-to guides on many of the book's topics"--Provided by publisher.
Category: Mathematics

New Foundations In Mathematics

Author : Garret Sobczyk
ISBN : 9780817683856
Genre : Mathematics
File Size : 52.94 MB
Format : PDF, ePub
Download : 124
Read : 1214

The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.
Category: Mathematics

Guide To Geometric Algebra In Practice

Author : Leo Dorst
ISBN : 0857298119
Genre : Computers
File Size : 80.87 MB
Format : PDF
Download : 473
Read : 1271

This highly practical Guide to Geometric Algebra in Practice reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. Topics and features: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the description of rigid body motion, interpolation and tracking, and image processing; reviews the employment of GA in theorem proving and combinatorics; discusses the geometric algebra of lines, lower-dimensional algebras, and other alternatives to 5-dimensional CGA; proposes applications of coordinate-free methods of GA for differential geometry.
Category: Computers

Geometric Differentiation

Author : I. R. Porteous
ISBN : 0521002648
Genre : Mathematics
File Size : 49.29 MB
Format : PDF, Mobi
Download : 800
Read : 779

This is a revised version of the popular Geometric Differentiation, first edition.
Category: Mathematics

Clifford Algebras And Lie Theory

Author : Eckhard Meinrenken
ISBN : 9783642362163
Genre : Mathematics
File Size : 68.88 MB
Format : PDF, Kindle
Download : 839
Read : 463

This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré–Birkhoff–Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.
Category: Mathematics