A FIRST COURSE IN BAYESIAN STATISTICAL METHODS SPRINGER TEXTS IN STATISTICS

Download A First Course In Bayesian Statistical Methods Springer Texts In Statistics ebook PDF or Read Online books in PDF, EPUB, and Mobi Format. Click Download or Read Online button to A FIRST COURSE IN BAYESIAN STATISTICAL METHODS SPRINGER TEXTS IN STATISTICS book pdf for free now.

A First Course In Bayesian Statistical Methods

Author : Peter D. Hoff
ISBN : 0387924078
Genre : Mathematics
File Size : 85.13 MB
Format : PDF, Docs
Download : 890
Read : 653

A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.
Category: Mathematics

Wahrscheinlichkeitstheorie Und Stochastische Prozesse

Author : Michael Mürmann
ISBN : 9783642381607
Genre : Mathematics
File Size : 44.98 MB
Format : PDF, Docs
Download : 609
Read : 179

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​
Category: Mathematics

Angewandte Datenanalyse

Author : Daniel Bättig
ISBN : 9783662542200
Genre : Mathematics
File Size : 41.74 MB
Format : PDF, ePub, Docs
Download : 926
Read : 416

Dieses Buch bietet einen systematisch aufgebauten Einstieg in angewandte Datenanalyse, Bayes ́sche Statistik und moderne Simulationsmethoden mit dem Computer. Ausgehend von der Zielsetzung, nicht direkt messbare Größen zu bestimmen und Prognosen zu zukünftigen Werten von unsicheren Größen zu berechnen, beschreibt und erläutert es die Vorgehensweisen – von der systematischen Sammlung von Daten über die Quantifizierung von Unsicherheit anhand von Wahrscheinlichkeiten bis hin zur Anwendung von Regressionsmodellen.Mit zahlreichen Reflexionsaufgaben und Beispielen aus der Praxis sowie seiner in vielen Kursen erprobten Didaktik ist das Buch ideal für Studierende in den angewandten Wissenschaften wie Ingenieur-, Natur- und Wirtschaftswissenschaften geeignet.Für die Neuauflage wurden einige Kapitel überarbeitet. Zudem wurde ein Abschnitt zu hierarchischen Modellen eingefügt und das Buch mit einem Kapitel zur Plausibilität von Modellen und von Hypothesen ergänzt. Sowohl die verwendeten Datensätze und Programmcodes als auch die Lösungen zu den Reflexionsaufgaben sind als Zusatzmaterial online verfügbar.
Category: Mathematics

Wahrscheinlichkeitsrechnung Und Statistik

Author : Robert Hafner
ISBN : 9783709169445
Genre : Mathematics
File Size : 69.72 MB
Format : PDF, ePub, Mobi
Download : 196
Read : 1304

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.
Category: Mathematics

Statistik Workshop F R Programmierer

Author : Allen B. Downey
ISBN : 9783868993431
Genre : Computers
File Size : 87.24 MB
Format : PDF, ePub, Docs
Download : 685
Read : 836

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.
Category: Computers

R In A Nutshell

Author : Joseph Adler
ISBN : 9783897216501
Genre : Computers
File Size : 57.16 MB
Format : PDF, Mobi
Download : 587
Read : 237

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.
Category: Computers

Die Monte Carlo Methode

Author : Harald Nahrstedt
ISBN : 9783658101497
Genre : Mathematics
File Size : 39.25 MB
Format : PDF, Kindle
Download : 695
Read : 928

Harald Nahrstedt zeigt hier den pragmatisch technischen und weniger den wissenschaftlichen Ansatz, wie Excel mit seinen Programmiermöglichkeiten sich immer mehr zu einem universellen Arbeitsmittel entwickelt. So ist die Simulation mit Hilfe von Pseudozufallszahlen ein schneller und preiswerter Weg zu fachlichen Aussagen. Den Rahmen dieser Abhandlung bildet der geschichtliche Hintergrund.
Category: Mathematics

Methods In Neuroethological Research

Author : Hiroto Ogawa
ISBN : 9784431543312
Genre : Medical
File Size : 64.94 MB
Format : PDF, Docs
Download : 580
Read : 674

The rapid progress of neuroscience in the last decade can be largely attributed to significant advances in neuroethology, a branch of science that seeks to understand the neural basis of natural animal behavior. Novel approaches including molecular biological techniques, optical recording methods, functional anatomy, and informatics have brought drastic changes in how the neural systems underlying high-level behaviors such as learning and memory are described. This book introduces recent research techniques in neuroethology, with diverse topics involving nematodes, insects, and vertebrates (birds, mice and primates), divided into sections by research method. Each section consists of two chapters written by different authors who have developed their own unique approaches. Reports of research in “model animals” including C. elegans, Drosophila, and mice, which were not typical specimens in conventional neuroethology, have been deliberately selected for this book because a molecular genetic approach to these animals is necessary for advances in neuroethology. Novel methodology including optical recording and functional labeling with reporter genes such as GFP has been actively used in recent neurobiological studies, and genetic manipulation techniques such as optogenetics also are powerful tools for understanding the molecular basis of neural systems for animal behavior. This book provides not only these new strategies but also thought-provoking statements of philosophy in neuroethology for students and young researchers in the biological sciences.
Category: Medical

Markov Chain Monte Carlo Methoden Herleitung Beweis Und Implementierung

Author : Thomas Plehn
ISBN : 9783956844515
Genre : Mathematics
File Size : 38.95 MB
Format : PDF, Kindle
Download : 237
Read : 1011

In seiner Arbeit beschäftigt sich der Autor mit der ‘Markov Chain Monte Carlo‘, auch abgekürzt als MCMC. Dabei handelt es sich um eine Monte Carlo Methode. Allen Monte Carlo Methoden ist gemein, dass sie von einer mehr oder minder komplizierten Verteilung zufällige Szenarien erzeugen. Diese Szenarien werden dann genutzt um Aussagen über Erwartungswerte oder andere Kennzahlen der Verteilung zu treffen. Diese Aussagen sind natürlich nur zu gebrauchen, wenn man sehr viele zufällig erzeugte Szenarien auswertet. Die Methode kommt also immer dann zum Einsatz, wenn es nicht möglich ist, aus der Verteilung der Szenarien direkt Rückschlüsse auf die statistischen Kennzahlen der Verteilung zu ziehen, weder auf analytischem Wege, noch durch numerische Integration (bei sehr vielen Dimensionen steigt der Aufwand rapide an). Markov Chain Monte Carlo ist nun eine spezielle Monte Carlo Methode unter Zuhilfenahme von Markovketten. Diese kommt immer dann zum Einsatz, wenn es nicht möglich ist, von einer Verteilung auf einfache Weise Szenarien zu erzeugen. Eine Markovkette fängt bei einem Zustand an und geht von einem bestimmten Zustand mit einer bestimmten Wahrscheinlichkeit zu einem anderen Zustand über. Diese Übergangswahrscheinlichkeiten stehen in einer Übergangsmatrix. Der Knackpunkt ist nun, dass diese Form der Zustandsgenerierung oft einfacher zu implementieren ist, als direkt auf eine Verteilung zurückzugreifen. In der Arbeit gibt es mehrere konkrete Beispiele für den Einsatz solcher Methoden. Quelltexte der Implementierungen sind beigefügt.
Category: Mathematics